Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind

Abstract

The visual cortex may be more modifiable than previously considered. Using functional magnetic resonance imaging (fMRI) in ten congenitally blind human participants, we found robust occipital activation during a verbal-memory task (in the absence of any sensory input), as well as during verb generation and Braille reading. We also found evidence for reorganization and specialization of the occipital cortex, along the anterior–posterior axis. Whereas anterior regions showed preference for Braille, posterior regions (including V1) showed preference for verbal-memory and verb generation (which both require memory of verbal material). No such occipital activation was found in sighted subjects. This difference between the groups was mirrored by superior performance of the blind in various verbal-memory tasks. Moreover, the magnitude of V1 activation during the verbal-memory condition was highly correlated with the blind individual's abilities in a variety of verbal-memory tests, suggesting that the additional occipital activation may have a functional role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Robust posterior occipital activation during verbal-memory, Braille and verb-generation tasks in the congenitally blind.
Figure 2: Differences in the fMRI activation patterns between blind and sighted groups.
Figure 3: Indication for a novel functional organization in the occipital cortex of the blind.
Figure 4: The preference of regions within the occipital cortex of the blind.
Figure 5: Comparing the activation pattern in three primary sensory regions.
Figure 6: The blind subjects' V1 activation during verbal-memory is correlated with their word recognition performance 6 months later.
Figure 7: The magnitude of calcarine activation in the blind is correlated with performance level in the standardized Wechsler verbal-memory tests.

Similar content being viewed by others

References

  1. Roder, B., Rosler, F. & Neville, H.J. Auditory memory in congenitally blind adults: a behavioral-electrophysiological investigation. Cogn. Brain Res. 11, 289–303 (2001).

    Article  CAS  Google Scholar 

  2. Pozar, L. Effects of long-term sensory deprivation on recall of verbal material. Studia Psychologica 24, 311 (1982).

    Google Scholar 

  3. Tillman, M.H. & Bashaw, W.L. Multivariate analysis of the WISC scales for blind and sighted children. Psychol. Reports 23, 523–526 (1968).

    Article  CAS  Google Scholar 

  4. Hull, T. & Mason, H. Performance of blind children on digit-span tests. J. Vis. Impairm. Blindn. 89, 166–169 (1995).

    Google Scholar 

  5. Van Essen, D.C. & Drury, H.A. Structural and functional analysis of human cerebral cortex using a surface-based atlas. J. Neurosci. 17, 7079–7102 (1997).

    Article  CAS  Google Scholar 

  6. Zeki, S.M. Functional specialization in the visual cortex of the rhesus monkey. Nature 274, 423–428 (1978).

    Article  CAS  Google Scholar 

  7. Sadato, N. et al. Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380, 526–528 (1996).

    Article  CAS  Google Scholar 

  8. Buchel, C., Price, C. & Friston, K. A multimodal language region in the ventral visual pathway. Nature 394, 274–277 (1998).

    Article  CAS  Google Scholar 

  9. Burton, H. et al. Adaptive changes in early and late blind: a fMRI study of Braille reading. J. Neurophysiol. 87, 589–607 (2002).

    Article  CAS  Google Scholar 

  10. Sadato, N., Okada, T., Honda, M. & Yonekura, Y. Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage 16, 389–400 (2002).

    Article  Google Scholar 

  11. Cohen, L.G. et al. Functional relevance of cross-modal plasticity in blind humans. Nature 389, 180–183 (1997).

    Article  CAS  Google Scholar 

  12. Bavelier, D. & Neville, H.J. Cross-modal plasticity: where and how? Nat. Rev. Neurosci. 3, 443–452 (2002).

    Article  CAS  Google Scholar 

  13. Burton, H., Snyder, A.Z., Diamond, J.B. & Raichle, M.E. Adaptive changes in early and late blind: a fMRI study of verb-generation to heard nouns. J. Neurophysiol. 88, 3359–3371 (2002).

    Article  CAS  Google Scholar 

  14. Roder, B., Stock, O., Bien, S., Neville, H. & Rosler, F. Speech processing activates visual cortex in congenitally blind humans. Eur. J. Neurosci. 16, 930–936 (2002).

    Article  Google Scholar 

  15. Kujala, T. et al. Visual cortex activation in blind humans during sound discrimination. Neurosci. Lett. 183, 143–146 (1995).

    Article  CAS  Google Scholar 

  16. Arno, P. et al. Occipital activation by pattern recognition in the early blind using auditory substitution for vision. Neuroimage 13, 632–645 (2001).

    Article  CAS  Google Scholar 

  17. Weeks, R. et al. A positron emission tomographic study of auditory localization in the congenitally blind. J. Neurosci. 20, 2664–2672 (2000).

    Article  CAS  Google Scholar 

  18. De Volder, A.G. et al. Auditory triggered mental imagery of shape involves visual association areas in early blind humans. Neuroimage 14, 129–139 (2001).

    Article  CAS  Google Scholar 

  19. Petersen, S.E., Fox, P.T., Posner, M.I., Mintun, M. & Raichle, M.E. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331, 585–589 (1988).

    Article  CAS  Google Scholar 

  20. Friston, K.J., Holmes, A.P. & Worsley, K.J. How many subjects constitute a study? Neuroimage 4, 223–235 (1999).

    Article  Google Scholar 

  21. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  22. Malach, R. et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 92, 8135–8139 (1995).

    Article  CAS  Google Scholar 

  23. Petrides, M., Alivisatos, B. & Evans, A.C. Functional activation of the human ventrolateral frontal cortex during mnemonic retrieval of verbal information. Proc. Natl. Acad. Sci. USA 92, 5803–5807 (1995).

    Article  CAS  Google Scholar 

  24. Cabeza, R. & Nyberg, L. Imaging cognition II: An empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000).

    Article  CAS  Google Scholar 

  25. Price, C.J. The functional anatomy of word comprehension and production. Trends Cogn. Sci. 2, 281–288 (1998).

    Article  CAS  Google Scholar 

  26. Gabrieli, J.D.E., Poldrack, R.A. & Desmond, J.E. The role of left prefrontal cortex in language and memory. Proc. Natl. Acad. Sci. USA 95, 906–913 (1998).

    Article  CAS  Google Scholar 

  27. Friston, K. et al. Statistical parametric maps in functional imaging: a general linear approach. Hum. Brain Mapp. 2, 189–210 (1995).

    Article  Google Scholar 

  28. Wechsler Memory Scale 3rd edn. (WMS-3) (The Psychological Corporation, Cleveland, Ohio, 1997).

  29. O'Craven, K.M. & Kanwisher, N. Mental imagery of faces and places activates corresponding stimulus-specific brain regions. J. Cogn. Neurosci. 12, 1013–1023 (2000).

    Article  CAS  Google Scholar 

  30. Ishai, A., Ungerleider, L.G. & Haxby, J.V. Distributed neural systems for the generation of visual images. Neuron 28, 979–990 (2000).

    Article  CAS  Google Scholar 

  31. Amedi, A., Malach, R., Hendler, T., Peled, S. & Zohary, E. Visuo-haptic object-related activation in the ventral visual pathway. Nat. Neurosci. 4, 324–330 (2001).

    Article  CAS  Google Scholar 

  32. Amedi, A., Jacobson, G., Hendler, T., Malach, R. & Zohary, E. Convergence of visual and tactile shape processing in the human lateral occipital complex. Cereb. Cortex. 12, 1202–1212 (2002).

    Article  Google Scholar 

  33. James, T.W. et al. Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 40, 1706–1714 (2002).

    Article  Google Scholar 

  34. Zangaladze, A., Epstein, C.M. Grafton, S.T. & Sathian, K. Involvement of visual cortex in tactile discrimination of orientation. Nature 401, 587–590 (1999).

    Article  CAS  Google Scholar 

  35. Avidan, G. et al. Contrast sensitivity in human visual areas and its relationship to object recognition. J. Neurophysiol. 87, 3102–3116 (2002).

    Article  Google Scholar 

  36. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  Google Scholar 

  37. Grill-Spector, K., Kushnir, T., Hendler, T. & Malach, R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat. Neurosci. 3, 837–843 (2000).

    Article  CAS  Google Scholar 

  38. Karni, A. et al. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 377, 155–158 (1995).

    Article  CAS  Google Scholar 

  39. Maguire, E.A., Valentine, E.R., Wilding, J.M. & Kapur, N. Routes to remembering: the brains behind superior memory. Nat. Neuorsci. 6, 60–95 (2003).

    Google Scholar 

  40. Rockland, K.S. & Van Hoesen, G.W. Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. Cereb. Cortex 4, 300–313 (1994).

    Article  CAS  Google Scholar 

  41. Distler, C., Boussaoud, D., Desimone, R. & Ungerleider, L.G. Cortical connections of inferior temporal area TEO in macaque monkeys. J. Comp. Neurol. 334, 125–150 (1993).

    Article  CAS  Google Scholar 

  42. Rempel-Clower, N.L. & Barbas, H. The laminar pattern of connections between prefrontal and anterior temporal cortices in the Rhesus monkey is related to cortical structure and function. Cereb. Cortex 10, 851–865 (2000).

    Article  CAS  Google Scholar 

  43. Dehay, C., Bullier, J. & Kennedy, H. Transient projections from the fronto-parietal and temporal cortex to areas 17, 18 and 19 in the kitten. Exp. Brain Res. 57, 208–212 (1984).

    Article  CAS  Google Scholar 

  44. Tulving, E., Kapur, S., Craik, F.I.M., Moscovitch, M. & Houle, S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc. Natl. Acad. Sci. USA 91, 2016–2020 (1994).

    Article  CAS  Google Scholar 

  45. Wagner, A.D. et al. Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science 281, 1188–1191 (1998).

    Article  CAS  Google Scholar 

  46. Baker, J.T., Sanders, A.L., Maccotta, L. & Buckner, R.L. Neural correlates of verbal-memory encoding during semantic and structural processing tasks. Neuroreport 12, 1251–1256 (2001).

    Article  CAS  Google Scholar 

  47. Pascual-Leone, A., Walsh, V. & Rothwell, J. Transcranial magnetic stimulation in cognitive neuroscience-virtual lesion, chronometry, and functional connectivity. Curr. Opin. Neurobiol. 10, 232–237 (2000).

    Article  CAS  Google Scholar 

  48. Giraud, A.L., Price, C.J., Graham, J.M. & Frackowiak, R.S.J. Functional plasticity of language-related brain areas after cochlear implantation. Brain 124, 1307–1316 (2001).

    Article  CAS  Google Scholar 

  49. Forman, S.D. et al. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn. Reson. Med. 33, 636–647 (1995).

    Article  CAS  Google Scholar 

  50. Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Ahissar for pointing out the superior memory capabilities of the blind, A. Cohen, S. Hochstein, T. Orlov and G. Jacobson for insightful comments, M. Harel and T. Orlov for help with the 3D–cortex reconstruction, and M. Oved and M. Mattityahu from the learning center for the blind in the Hebrew University of Jerusalem. This study was funded by the Israel Science Foundation of the Israel Academy of Sciences (grant 8009). A.A. is funded by a fellowship from the Horowitz foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amedi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

The laterality preference of voxels within the posterior occipital cortex for each of the tasks used in the experiment.White filled lines mark the approximate border between V1 and V2 while the dotted lines indicate the border between the retinotopic regions and the object related regions.The maps were computed by flipping the subjects ’ data images around the midline and contrasting the flipped and non-flipped images (after applying an 8mm FWHM spatial smoothing Gaussian).A paired t-test was then applied for each task to assess its laterality in each Talairach voxel. Voxels activated to the same extent in the right and left hemisphere will show the same activation in the flipped and non-flipped images and thus won ’t show any significant activation.Voxels showing significant left hemisphere dominance appear here in red to yellow colors,while voxels showing significant right dominance are depicted in blue to green colors.These laterality maps in the posterior occipital cortex demonstrate strong left hemisphere lateralization for the verbal memory and verb-generation condition, weaker left dominance for the Braille reading condition and a trend in the opposite direction for the auditory noise and sweep conditions.Note that only the left hemisphere is presented since the other hemisphere will simply show the symmetrical inverse pattern. (JPG 40 kb)

Supplementary Table 1 (PDF 19 kb)

Supplementary Table 2 (PDF 16 kb)

Supplementary Table 3 (PDF 16 kb)

Supplementary Table 4 (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amedi, A., Raz, N., Pianka, P. et al. Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci 6, 758–766 (2003). https://doi.org/10.1038/nn1072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1072

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing