Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A holidic medium for Drosophila melanogaster

A Corrigendum to this article was published on 29 October 2015

A Corrigendum to this article was published on 28 August 2014

This article has been updated

Abstract

A critical requirement for research using model organisms is a well-defined and consistent diet. There is currently no complete chemically defined (holidic) diet available for Drosophila melanogaster. We describe a holidic medium that is equal in performance to an oligidic diet optimized for adult fecundity and lifespan. This holidic diet supports development over multiple generations but at a reduced rate. Over 7 years of experiments, the holidic diet yielded more consistent experimental outcomes than did oligidic food for egg laying by females. Nutrients and drugs were more available to flies in holidic medium and, similar to dietary restriction on oligidic food, amino acid dilution increased fly lifespan. We used this holidic medium to investigate amino acid–specific effects on food-choice behavior and report that folic acid from the microbiota is sufficient for Drosophila development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A holidic diet for adult Drosophila.
Figure 2: Nutrient-specific effects on Drosophila fitness traits.
Figure 3: Holidic diet as a tool to study behavior.
Figure 4: Drug bioavailability is increased on holidic medium.
Figure 5: Development on holidic media.

Similar content being viewed by others

Change history

  • 08 August 2014

    In the version of this article initially published, funding information for L.P. was omitted. The author acknowledges funding from the German Federal Ministry of Education and Research (0315893B/Sybacol (Systems Biology of Ageing Cologne)). The error has been corrected in the HTML and PDF versions of the article.

  • 19 October 2014

    In the version of this article initially published, only one corresponding author was listed (M.D.W.P.). L.P. has been added as a corresponding author for this article. The relevant contact information is partridge@age.mpg.de. This information has been added to the HTML and PDF versions of the article.

References

  1. Shorrocks, B. An ecological classification of European Drosophila species. Oecologia 345, 335–345 (1977).

    Article  Google Scholar 

  2. McKenzie, J. & McKechnie, S. A comparative study of resource utilization in natural populations of Drosophila melanogaster and D. simulans. Oecologia 40, 299–309 (1979).

    Article  CAS  Google Scholar 

  3. Bass, T.M. et al. Optimization of dietary restriction protocols in Drosophila. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1071–1081 (2007).

    Article  Google Scholar 

  4. Sang, J.H. The nutritional requirements of Drosophila. in The Genetics and Biology of Drosophila (eds. Ashburner, M. & Wright, T.R.F.) 159–192 (Academic Press, 1978).

  5. Piper, M.D.W. & Partridge, L. Dietary restriction in Drosophila: delayed aging or experimental artefact? PLoS Genet. 3, e57 (2007).

    Article  Google Scholar 

  6. Schultz, J., St. Lawrence, P. & Newmeyer, D. A chemically defined medium for the growth of Drosophila melanogaster. Anat. Rec. 96, 540 (1946).

    CAS  PubMed  Google Scholar 

  7. Sang, J.H. The quantitative nutritional requirements of Drosophila melanogaster. J. Exp. Biol. 33, 45–72 (1956).

    CAS  Google Scholar 

  8. Sang, J. & King, R. Nutritional requirements of axenically cultured Drosophila melanogaster adults. J. Exp. Biol. 38, 793–809 (1961).

    CAS  Google Scholar 

  9. Troen, A. et al. Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet. Age (Dordr) 29, 29–39 (2007).

    Article  CAS  Google Scholar 

  10. Troen, A.M. et al. Erratum to: Lifespan modification by glucose and methionine in Drosophila melanogaster fed a chemically defined diet. Age (Dordr) 32, 123–123 (2010).

    Article  CAS  Google Scholar 

  11. Shchedrina, V. et al. Analyses of fruit flies that do not express selenoproteins or express a mouse selenoprotein, methionine sulfoxide reductase B1, reveal a role of selenoproteins in stress resistance. J. Biol. Chem. 286, 29449–29461 (2011).

    Article  CAS  Google Scholar 

  12. Lee, W.-C. & Micchelli, C.a. Development and characterization of a chemically defined food for Drosophila. PLoS ONE 8, e67308 (2013).

    Article  CAS  Google Scholar 

  13. Chakir, M., Peridy, O., Capy, P., Pla, E. & David, J.R. Adaptation to alcoholic fermentation in Drosophila: a parallel selection imposed by environmental ethanol and acetic acid. Proc. Natl. Acad. Sci. USA 90, 3621–3625 (1993).

    Article  CAS  Google Scholar 

  14. Grandison, R.C., Piper, M.D.W. & Partridge, L. Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462, 1061–1064 (2009).

    Article  CAS  Google Scholar 

  15. Hunt, V. A qualitatively minimal amino acid diet for D. melanogaster. Drosoph. Inf. Serv. 45, 179 (1970).

    Google Scholar 

  16. Grönke, S., Clarke, D.-F., Broughton, S., Andrews, T.D. & Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857 (2010).

    Article  Google Scholar 

  17. Mair, W., Piper, M.D.W. & Partridge, L. Calories do not explain extension of life span by dietary restriction in Drosophila. PLoS Biol. 3, e223 (2005).

    Article  Google Scholar 

  18. Lee, K.P. et al. Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc. Natl. Acad. Sci. USA 105, 2498–2503 (2008).

    Article  CAS  Google Scholar 

  19. Skorupa, D.A., Dervisefendic, A., Zwiener, J. & Pletcher, S.D. Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7, 478–490 (2008).

    Article  CAS  Google Scholar 

  20. Ribeiro, C. & Dickson, B.J. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000–1005 (2010).

    Article  CAS  Google Scholar 

  21. Vargas, M.A., Luo, N., Yamaguchi, A. & Kapahi, P. A role for S6 kinase and serotonin in postmating dietary switch and balance of nutrients in D. melanogaster. Curr. Biol. 20, 1006–1011 (2010).

    Article  CAS  Google Scholar 

  22. Osterwalder, T., Yoon, K.S., White, B.H. & Keshishian, H. A conditional tissue-specific transgene expression system using inducible GAL4. Proc. Natl. Acad. Sci. USA 98, 12596–12601 (2001).

    Article  CAS  Google Scholar 

  23. Sofola, O. et al. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease. PLoS Genet. 6, e1001087 (2010).

    Article  Google Scholar 

  24. Bjedov, I. et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010).

    Article  CAS  Google Scholar 

  25. Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).

    Article  CAS  Google Scholar 

  26. Hollingsworth, M.J. & Burcombe, J.V. The nutritional requirements for longevity in Drosophila. J. Insect Physiol. 16, 1017–1025 (1970).

    Article  CAS  Google Scholar 

  27. Van Herrewege, J. Nutritional requirements of adult Drosophila melanogaster: the influence of the casein concentration on the duration of life. Exp. Gerontol. 9, 191–198 (1974).

    Article  CAS  Google Scholar 

  28. Martin-Romero, F.J. et al. Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality. J. Biol. Chem. 276, 29798–29804 (2001).

    Article  CAS  Google Scholar 

  29. Min, K.J. & Tatar, M. Restriction of amino acids extends lifespan in Drosophila melanogaster. Mech. Ageing Dev. 127, 643–646 (2006).

    Article  CAS  Google Scholar 

  30. Lefranc, A. & Bundgaard, R. The influence of male and female body size on copulation duration and fecundity in Drosophila melanogaster. Hereditas 132, 243–247 (2000).

    Article  CAS  Google Scholar 

  31. Pandey, U. & Nichols, C. Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol. Rev. 63, 411–436 (2011).

    Article  CAS  Google Scholar 

  32. Toivonen, J.M. et al. No influence of Indy on lifespan in Drosophila after correction for genetic and cytoplasmic background effects. PLoS Genet. 3, e95 (2007).

    Article  Google Scholar 

  33. Sofola, O. et al. Inhibition of GSK-3 ameliorates Abeta pathology in an adult-onset Drosophila model of Alzheimer's disease. PLoS Genet. 6, e1001087 (2010).

    Article  Google Scholar 

  34. Grönke, S., Clarke, D.-F., Broughton, S., Andrews, T.D. & Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857 (2010).

    Article  Google Scholar 

  35. Bass, T.M. et al. Optimization of dietary restriction protocols in Drosophila. J. Gerontol. A Biol. Sci. Med. Sci. 62, 1071–1081 (2007).

    Article  Google Scholar 

  36. Clancy, D.J. & Kennington, W.J. A simple method to achieve consistent larval density in bottle cultures. Drosoph. Inf. Serv. 84, 168–169 (2001).

    Google Scholar 

  37. Shin, S.C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011).

    Article  CAS  Google Scholar 

  38. Ribeiro, C. & Dickson, B.J. Sex peptide receptor and neuronal TOR/S6K signaling modulate nutrient balancing in Drosophila. Curr. Biol. 20, 1000–1005 (2010).

    Article  CAS  Google Scholar 

  39. Huber, R. et al. Sleep homeostasis in Drosophila melanogaster. Sleep 27, 628–639 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the following funding: the Royal Society (UF100158), and the Biotechnology and Biological Sciences Research Council, UK (BB/I011544/1) (M.D.W.P.); Foundation for Science and Technology (postdoctoral fellowship SFRH/BPD/78947/2011) and European Molecular Biology Organization (long-term postdoctoral fellowship ALTF 1602-2011) (R.L.-G.); Alzheimer's Research, UK (F.K.); Champalimaud Foundation, the Bial foundation and the Foundation for Science and Technology (grant PTDC/BIA-BCM/118684/2010) (C.R.); the Wellcome Trust UK (098565/Z/12/Z), Max Planck Society and the European Research Council under the European Union′s Seventh Framework Programme (FP7/2007-2013), European Research Council grant agreement 268739 and the German Federal Ministry of Education and Research (0315893B/Sybacol (Systems Biology of Ageing Cologne)) (L.P.). For this work we used the Drosophila Aging Core of the Nathan Shock Center of Excellence in the Biology of Aging, funded by the US National Institute of Aging (P30-AG-013283) (S.D.P.).

Author information

Authors and Affiliations

Authors

Contributions

M.D.W.P. and L.P. conceived and developed the project, and wrote the manuscript. M.D.W.P., R.L.-G., M.Y., X.H., N.J.L., M.P.H., C.H., G.A.S., C.N. and F.K. performed experiments. All authors contributed to data analysis and interpretation.

Corresponding authors

Correspondence to Matthew D W Piper or Linda Partridge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 519 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piper, M., Blanc, E., Leitão-Gonçalves, R. et al. A holidic medium for Drosophila melanogaster. Nat Methods 11, 100–105 (2014). https://doi.org/10.1038/nmeth.2731

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing