Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling

Abstract

Catecholamines are important regulators of homeostasis, yet their functions in hematopoiesis are poorly understood. Here we report that immature human CD34+ cells dynamically expressed dopamine and β2-adrenergic receptors, with higher expression in the primitive CD34+CD38lo population. The myeloid cytokines G-CSF and GM-CSF upregulated neuronal receptor expression on immature CD34+ cells. Treatment with neurotransmitters increased the motility, proliferation and colony formation of human progenitor cells, correlating with increased polarity, expression of the metalloproteinase MT1-MMP and activity of the metalloproteinase MMP-2. Treatment with catecholamines enhanced human CD34+ cell engraftment of NOD-SCID mice through Wnt signaling activation and increased cell mobilization and bone marrow Sca-1+c-Kit+Lin cell numbers. Our results identify new functions for neurotransmitters and myeloid cytokines in the direct regulation of human and mouse progenitor cell migration and development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increased dopamine receptor expression in G-CSF-treated human CD34+ cells.
Figure 2: Dopamine receptor agonists increase the polarization and motility of CD34+ cells.
Figure 3: Dopamine receptor agonists increase the clonogenic progenitor content and engraftment potential of CD34+ cells.
Figure 4: Adrenergic neurotransmitters regulate CD34+ cell motility and proliferation.
Figure 5: Epinephrine induces progenitor cell proliferation, motility and in vivo mobilization.
Figure 6: Neurotransmitters activate the canonical Wnt signaling pathway.

Similar content being viewed by others

References

  1. Adams, G.B. & Scadden, D.T. The hematopoietic stem cell in its place. Nat. Immunol. 7, 333–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Suda, T., Arai, F. & Hirao, A. Hematopoietic stem cells and their niche. Trends Immunol. 26, 426–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Yin, T. & Li, L. The stem cell niches in bone. J. Clin. Invest. 116, 1195–1201 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lapidot, T. et al. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255, 1137–1141 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Larochelle, A. et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat. Med. 2, 1329–1337 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L. & Weissman, I.L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Kollet, O., Dar, A. & Lapidot, T. The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu. Rev. Immunol. (2006).

  9. Kollet, O. et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat. Med. 12, 657–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Lapidot, T. & Petit, I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp. Hematol. 30, 973–981 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Papayannopoulou, T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood 103, 1580–1585 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. To, L.B., Haylock, D.N., Simmons, P.J. & Juttner, C.A. The biology and clinical uses of blood stem cells. Blood 89, 2233–2258 (1997).

    CAS  PubMed  Google Scholar 

  13. Janowska-Wieczorek, A., Matsuzaki, A. & Marquez, L. The hematopoietic microenvironment: matrix metalloproteinases in the hematopoietic microenvironment. Hematology 4, 515–527 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Link, D.C. Mechanisms of granulocyte colony-stimulating factor-induced hematopoietic progenitor-cell mobilization. Semin. Hematol. 37, 25–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Morrison, S.J., Wright, D.E. & Weissman, I.L. Cyclophosphamide/granulocyte colony-stimulating factor induces hematopoietic stem cells to proliferate prior to mobilization. Proc. Natl. Acad. Sci. USA 94, 1908–1913 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yamazaki, K. & Allen, T.D. Ultrastructural and morphometric alterations in bone marrow stromal tissue after 7 Gy irradiation. Blood Cells 17, 527–549 (1991).

    CAS  PubMed  Google Scholar 

  17. Hasko, G. & Szabo, C. Regulation of cytokine and chemokine production by transmitters and co-transmitters of the autonomic nervous system. Biochem. Pharmacol. 56, 1079–1087 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Brodde, O.E., Bruck, H. & Leineweber, K. Cardiac adrenoceptors: physiological and pathophysiological relevance. J. Pharmacol. Sci. 100, 323–337 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Vallone, D., Picetti, R. & Borrelli, E. Structure and function of dopamine receptors. Neurosci. Biobehav. Rev. 24, 125–132 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Katayama, Y. et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124, 407–421 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Nelson, W.J. & Nusse, R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 303, 1483–1487 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Austin, T.W., Solar, G.P., Ziegler, F.C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89, 3624–3635 (1997).

    CAS  PubMed  Google Scholar 

  24. Van Den Berg, D.J., Sharma, A.K., Bruno, E. & Hoffman, R. Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189–3202 (1998).

    CAS  PubMed  Google Scholar 

  25. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Duncan, A.W. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 6, 314–322 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl. Acad. Sci. USA 100, 3422–3427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Avigdor, A. et al. Membrane type 1-matrix metalloproteinase is directly involved in G-CSF induced human hematopoietic stem and progenitor cell mobilization. ASH Annu. Meet. Abstr. 104, 2675 (2004).

    Google Scholar 

  30. Shirvaikar, N., Montano, J., Turner, A.R., Ratajczak, M.Z. & Janowska-Wieczorek, A. Upregulation of MT1-MMP expression by hyaluronic acid enhances homing-related responses of hematopoietic CD34+ cells to an SDF-1 gradient. ASH Annu. Meet. Abstr. 104, 2889 (2004).

    Google Scholar 

  31. Wright, D.E. et al. Cyclophosphamide/granulocyte colony-stimulating factor causes selective mobilization of bone marrow hematopoietic stem cells into the blood after M phase of the cell cycle. Blood 97, 2278–2285 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Tzahor, E. & Lassar, A.B. Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev. 15, 255–260 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Neth, P. et al. Wnt signaling regulates the invasion capacity of human mesenchymal stem cells. Stem Cells 24, 1892–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Takahashi, M., Tsunoda, T., Seiki, M., Nakamura, Y. & Furukawa, Y. Identification of membrane-type matrix metalloproteinase-1 as a target of the β-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21, 5861–5867 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Hoagland, H.C. Hematologic complications of cancer chemotherapy. Semin. Oncol. 9, 95–102 (1982).

    CAS  PubMed  Google Scholar 

  36. Cancelas, J.A. & Williams, D.A. Stem cell mobilization by β2-agonists. Nat. Med. 12, 278–279 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Larsson, J. & Scadden, D. Nervous activity in a stem cell niche. Cell 124, 253–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Kondo, H. et al. Unloading induces osteoblastic cell suppression and osteoclastic cell activation to lead to bone loss via sympathetic nervous system. J. Biol. Chem. 280, 30192–30200 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2, 172–180 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Trowbridge, J.J., Xenocostas, A., Moon, R.T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med. 12, 89–98 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Kirstetter, P., Anderson, K., Porse, B.T., Jacobsen, S.E. & Nerlov, C. Activation of the canonical Wnt pathway leads to loss of hematopoietic stem cell repopulation and multilineage differentiation block. Nat. Immunol. 7, 1048–1056 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Scheller, M. et al. Hematopoietic stem cell and multilineage defects generated by constitutive β-catenin activation. Nat. Immunol. 7, 1037–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Trowbridge, J.J., Moon, R.T. & Bhatia, M. Hematopoietic stem cell biology: too much of a Wnt thing. Nat. Immunol. 7, 1021–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Spiegel, A. et al. Unique SDF-1-induced activation of human precursor-B ALL cells as a result of altered CXCR4 expression and signaling. Blood 103, 2900–2907 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Goichberg, P., Shtutman, M., Ben-Ze'ev, A. & Geiger, B. Recruitment of β-catenin to cadherin-mediated intercellular adhesions is involved in myogenic induction. J. Cell Sci. 114, 1309–1319 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Abel for assistance; E. Tzahor (Weizmann Institute of Science) for CRD-Frzb-enriched conditioned medium; and A. Globerson and S. Berrih-Aknin for discussions and critical review of the manuscript. Supported by Ares-Serono, the Gabriella Rich Center for Transplantation Biology, the Israel Science Foundation (796/04) and the Helen and Martin Kimmel Institute for Stem Cell Research at the Weizmann Institute of Science.

Author information

Authors and Affiliations

Authors

Contributions

A.S. designed and did experiments, analyzed data and wrote the manuscript; S.S., A.K., A.L., N.N., Y.A. and P.G. did experiments and analyzed data; I.R., I.H., H.B.-H. and A.N. provided human blood and bone marrow cells; M.R. provided advice on experimental design and manuscript preparation; and T.L. designed the research and wrote the manuscript.

Corresponding author

Correspondence to Tsvee Lapidot.

Ethics declarations

Competing interests

Funding for this study was provided by Serono, and a patent is being filed on the basis of some of the results.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spiegel, A., Shivtiel, S., Kalinkovich, A. et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 8, 1123–1131 (2007). https://doi.org/10.1038/ni1509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing