Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment

Abstract

Hematopoiesis requires tight regulation of the hematopoietic stem cell (HSC) population; however, the dynamics of HSC use at steady state are uncertain. Over 3–7 months, we evaluated the repopulation and self-renewal of more than 600 individual human 'severe combined immunodeficiency mouse–repopulating cells' (SRCs), tracked on the basis of lentiviral integration sites, in serially transplanted immune-deficient mice, as well as of SRC daughter cells that migrated to different marrow locations in a single mouse. Our data demonstrate maintenance by self-renewing SRCs after an initial period of clonal instability, a result inconsistent with the clonal succession model. We found wide variation in proliferation kinetics and self-renewal among SRCs, as well as between SRC daughter cells that repopulated equivalently, suggesting that SRC fate is unpredictable before SRCs enter more rigid 'downstream' developmental programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study design and multilineage engraftment in primary and secondary recipients of purified human cord blood cells.
Figure 2: Clonal analysis of CD34+CD38lo transplanted serial recipients.
Figure 3: Multilineage engraftment and clonal analysis of CD34+CD38 transplanted serial recipients.
Figure 4: Long-term repopulating kinetics of Lin cord blood cells.
Figure 5: Clonal dynamics of primary and secondary recipients evaluated over 30 weeks.

Similar content being viewed by others

References

  1. Kay, H.E. How many cell-generations? (Hypothesis). Lancet 1, 418–419 (1965).

    Article  Google Scholar 

  2. Drize, N.J., Keller, J.R. & Chertkov, J.L. Local clonal analysis of the hematopoietic system shows that multiple small short-living clones maintain life-long hematopoiesis in reconstituted mice. Blood 88, 2927–2938 (1996).

    CAS  PubMed  Google Scholar 

  3. Jordan, C.T. & Lemischka, I.R. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev. 4, 220–232 (1990).

    Article  CAS  Google Scholar 

  4. Abkowitz, J.L. et al. Behavior of hematopoietic stem cells in a large animal. Proc. Natl. Acad. Sci. USA 92, 2031–2035 (1995).

    Article  CAS  Google Scholar 

  5. Schmidt, M. et al. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 100, 2737–2743 (2002).

    Article  CAS  Google Scholar 

  6. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  Google Scholar 

  7. Benveniste, P., Cantin, C., Hyam, D. & Iscove, N. Hematopoietic stem cells engraft in mice with absolute efficiency. Nat. Immunol. 4, 708–713 (2003).

    Article  CAS  Google Scholar 

  8. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  9. Till, J.E., McCulloch, E.A. & Siminovitch, L. A stochastic model of stem cell proliferation based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA 51, 29–36 (1964).

    Article  CAS  Google Scholar 

  10. Lajtha, L.G. On the concept of the cell cycle. J. Cell. Comp. Physiol. 62, 143–145 (1963).

    Google Scholar 

  11. Humphries, R.K., Eaves, A.C. & Eaves, C.J. Self-renewal of hemopoietic stem cells during mixed colony formation in vitro. Proc. Natl. Acad. Sci. USA 78, 3629–3633 (1981).

    Article  CAS  Google Scholar 

  12. Nakahata, T. & Ogawa, M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies. Proc. Natl. Acad. Sci. USA 79, 3843–3847 (1982).

    Article  CAS  Google Scholar 

  13. Abkowitz, J.L., Catlin, S.N. & Guttorp, P. Evidence that hematopoiesis may be a stochastic process in vivo. Nat. Med. 2, 190–197 (1996).

    Article  CAS  Google Scholar 

  14. Abkowitz, J.L., Golinelli, D., Harrison, D.E. & Guttorp, P. In vivo kinetics of murine hemopoietic stem cells. Blood 96, 3399–3405 (2000).

    CAS  PubMed  Google Scholar 

  15. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors:Implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  Google Scholar 

  16. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  Google Scholar 

  17. Jones, R., Wagner, J., Celano, P., Zicha, M. & Sharkis, S. Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347, 188–189 (1990).

    Article  CAS  Google Scholar 

  18. Trevisan, M. & Iscove, N.N. Phenotypic analysis of murine long-term hemopoietic reconstituting cells quantitated competitively in vivo and comparison with more advanced colony-forming progeny. J. Exp. Med. 181, 93–103 (1995).

    Article  CAS  Google Scholar 

  19. Christensen, J.L. & Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 98, 14541–14546 (2001).

    Article  CAS  Google Scholar 

  20. Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  Google Scholar 

  21. Matsuzaki, Y., Kinjo, K., Mulligan, R.C. & Okano, H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 20, 87–93 (2004).

    Article  CAS  Google Scholar 

  22. Camargo, F.D., Chambers, S.M., Drew, E., McNagny, K.M. & Goodell, M.A. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood 107, 501–507 (2006).

    Article  CAS  Google Scholar 

  23. Ema, H. et al. Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev. Cell 8, 907–914 (2005).

    Article  CAS  Google Scholar 

  24. McKenzie, J.L., Takenaka, K., Gan, O.I., Doedens, M. & Dick, J.E. Low rhodamine123 retention identifies long-term human hematopoietic stem cells within the LinCD34+CD38 population. Blood (in the press).

  25. McKenzie, J.L., Gan, O.I., Doedens, M. & Dick, J.E. Human short-term repopulating stem cells are efficiently detected following intrafemoral transplantation into NOD/SCID recipients depleted of CD122+ cells. Blood 106, 1259–1261 (2005).

    Article  CAS  Google Scholar 

  26. Wang, J.C. et al. in Hematopoiesis: A Developmental Approach (ed Zon, L.I.) 99–118 (Oxford University Press, New York, 2001).

    Google Scholar 

  27. Wang, J.C. & Dick, J.E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).

    Article  CAS  Google Scholar 

  28. Hogan, C.J., Shpall, E.J. & Keller, G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice. Proc. Natl. Acad. Sci. USA 99, 413–418 (2002).

    Article  CAS  Google Scholar 

  29. Mazurier, F., Doedens, M., Gan, O.I. & Dick, J.E. Rapid myeloerythroid repopulation after intrafemoral transplantation of NOD-SCID mice reveals a new class of human stem cells. Nat. Med. 9, 959–963 (2003).

    Article  CAS  Google Scholar 

  30. Glimm, H. et al. Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J. Clin. Invest. 107, 199–206 (2001).

    Article  CAS  Google Scholar 

  31. Kerre, T.C. et al. Both CD34+38+ and CD34+38 cells home specifically to the bone marrow of NOD/LtSZ scid/scid mice but show different kinetics in expansion. J. Immunol. 167, 3692–3698 (2001).

    Article  CAS  Google Scholar 

  32. Guenechea, G., Gan, O.I., Dorrell, C. & Dick, J.E. Distinct classes of human stem cells that differ in proliferative and self-renewal potential. Nat. Immunol. 2, 75–82 (2001).

    Article  CAS  Google Scholar 

  33. Mazurier, F., Gan, O.I., McKenzie, J.L., Doedens, M. & Dick, J.E. Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment. Blood 103, 545–552 (2004).

    Article  CAS  Google Scholar 

  34. Ailles, L. et al. Molecular evidence of lentiviral vector-mediated gene transfer into human self-renewing, multi-potent, long-term NOD/SCID repopulating hematopoietic cells. Mol. Ther. 6, 615–626 (2002).

    Article  CAS  Google Scholar 

  35. Dao, M.A., Yu, X.J. & Nolta, J.A. Clonal diversity of primitive human hematopoietic progenitors following retroviral marking and long-term engraftment in immune-deficient mice. Exp. Hematol. 25, 1357–1366 (1997).

    CAS  PubMed  Google Scholar 

  36. Piacibello, W. et al. Lentiviral gene transfer and ex vivo expansion of human primitive stem cells capable of primary, secondary, and tertiary multilineage repopulation in NOD/SCID mice. Nonobese diabetic/severe combined immunodeficient. Blood 100, 4391–4400 (2002).

    Article  CAS  Google Scholar 

  37. Sieburg, H.B. et al. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107, 2311–2316 (2006).

    Article  CAS  Google Scholar 

  38. Kustikova, O. et al. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308, 1171–1174 (2005).

    Article  CAS  Google Scholar 

  39. Woods, N.B., Bottero, V., Schmidt, M., von Kalle, C. & Verma, I.M. Gene therapy: therapeutic gene causing lymphoma. Nature 440, 1123 (2006).

    Article  CAS  Google Scholar 

  40. Lemischka, I.R., Raulet, D.H. & Mulligan, R.C. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45, 917–927 (1986).

    Article  CAS  Google Scholar 

  41. Shepherd, B.E., Guttorp, P., Lansdorp, P.M. & Abkowitz, J.L. Estimating human hematopoietic stem cell kinetics using granulocyte telomere lengths. Exp. Hematol. 32, 1040–1050 (2004).

    Article  CAS  Google Scholar 

  42. Abkowitz, J.L., Catlin, S.N., McCallie, M.T. & Guttorp, P. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood 100, 2665–2667 (2002).

    Article  CAS  Google Scholar 

  43. Yahata, T. et al. Clonal analysis of thymus-repopulating cells presents direct evidence for self-renewal division of human hematopoietic stem cells. Blood advance online publication 6 June 2006 (doi:10.1182/blood-2006-02-002204).

  44. Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 81, 2844–2853 (1993).

    CAS  PubMed  Google Scholar 

  45. Madlambayan, G.J. et al. Dynamic changes in cellular and microenvironmental composition can be controlled to elicit in vitro human hematopoietic stem cell expansion. Exp. Hematol. 33, 1229–1239 (2005).

    Article  CAS  Google Scholar 

  46. Ivanova, N. et al. Dissecting self-renewal in stem cells with RNA interference. Nature 442, 533–538 (2006).

    Article  CAS  Google Scholar 

  47. Tanaka, T. et al. A novel monoclonal antibody against murine IL-2 receptor β-chain. Characterization of receptor expression in normal lymphoid cells and EL-4 cells. J. Immunol. 147, 2222–2228 (1991).

    CAS  PubMed  Google Scholar 

  48. Herrbrich, P.E., Meyerrose, T.E., Wang, X., Ge, S. & Nolta, J.A. Development and characterization of the nude/NOD/SCID mouse: a novel xenograft recipient used to study long term human hematopoietic and mesenchymal stem cell engraftment. Blood. 100, abstract 2401 (2002).

  49. Vormoor, J. et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 83, 2489–2497 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Scheufler, P. Savage and the obstetrics unit of Trillium Hospital (Mississauga, Ontario) for providing cord blood samples; G. Mallia and S. Zere for processing cord blood samples; S. Zhao (Hospital for Sick Children, Toronto, Ontario) for sorting; and the Dick lab and N. Iscove for critical review of the manuscript. Supported by The Stem Cell Network of National Centres of Excellence; the National Cancer Institute of Canada with funds from the Canadian Cancer Society and the Terry Fox Foundation; Genome Canada through the Ontario Genomics Institute; Ontario Cancer Research Network with funds from the province of Ontario; the Leukemia and Lymphoma Society; the Canadian Institutes for Health Research; and Canada Research.

Author information

Authors and Affiliations

Authors

Contributions

J.L.M. and O.I.G. designed and did research, collected and analyzed data and wrote the paper; M.D. did research and collected data; J.C.Y.W. did research and wrote the paper; and J.E.D. designed research, analyzed data and wrote the paper.

Corresponding author

Correspondence to John E Dick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Summary of the self-renewal properties of CD34+CD38lo and Lin SRC. (PDF 103 kb)

Supplementary Fig. 2

Thirty-week multilineage engraftment from a mouse reconstituted by one transduced clone. (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenzie, J., Gan, O., Doedens, M. et al. Individual stem cells with highly variable proliferation and self-renewal properties comprise the human hematopoietic stem cell compartment. Nat Immunol 7, 1225–1233 (2006). https://doi.org/10.1038/ni1393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1393

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing