Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function

Abstract

Lethal-7 (let-7) microRNAs (miRNAs) are the most abundant miRNAs in the genome, but their role in developing thymocytes is unclear. We found that let-7 miRNAs targeted Zbtb16 mRNA, which encodes the lineage-specific transcription factor PLZF, to post-transcriptionally regulate PLZF expression and thereby the effector functions of natural killer T cells (NKT cells). Dynamic upregulation of let-7 miRNAs during the development of NKT thymocytes downregulated PLZF expression and directed their terminal differentiation into interferon-γ (IFN-γ)-producing NKT1 cells. Without upregulation of let-7 miRNAs, NKT thymocytes maintained high PLZF expression and terminally differentiated into interleukin 4 (IL-4)-producing NKT2 cells or IL-17-producing NKT17 cells. Upregulation of let-7 miRNAs in developing NKT thymocytes was signaled by IL-15, vitamin D and retinoic acid. Such targeting of a lineage-specific transcription factor by miRNA represents a previously unknown level of developmental regulation in the thymus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of let-7 miRNAs in wild-type and LIN28-transgenic thymocytes.
Figure 2: Analysis of thymocytes from LIN28-transgenic mice.
Figure 3: let-7 miRNAs target Zbtb16 mRNA.
Figure 4: Effect of let-7 and PLZF on NKT thymocytes.
Figure 5: let-7 deficiency prevents the generation of IFN-γ-producing NKT cells.
Figure 6: Effect of let-7 on NKT effector cell lineages.
Figure 7: Signals that upregulate let-7 expression in developing NKT thymocytes.

Similar content being viewed by others

References

  1. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    CAS  PubMed  Google Scholar 

  2. Taniuchi, I. et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development. Cell 111, 621–633 (2002).

    CAS  PubMed  Google Scholar 

  3. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    CAS  PubMed  Google Scholar 

  4. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Savage, A.K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Takahama, Y. & Singer, A. Post-transcriptional regulation of early T cell development by T cell receptor signals. Science 258, 1456–1462 (1992).

    CAS  PubMed  Google Scholar 

  8. Pasquinelli, A.E. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13, 271–282 (2012).

    CAS  PubMed  Google Scholar 

  9. Cobb, B.S. et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201, 1367–1373 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fedeli, M. et al. Dicer-dependent microRNA pathway controls invariant NKT cell development. J. Immunol. 183, 2506–2512 (2009).

    CAS  PubMed  Google Scholar 

  11. Zhou, L. et al. Tie2cre-induced inactivation of the miRNA-processing enzyme Dicer disrupts invariant NKT cell development. Proc. Natl. Acad. Sci. USA 106, 10266–10271 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Seo, K.H. et al. Loss of microRNAs in thymus perturbs invariant NKT cell development and function. Cell. Mol. Immunol. 7, 447–453 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    CAS  PubMed  Google Scholar 

  14. Roush, S. & Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008).

    CAS  PubMed  Google Scholar 

  15. Meneely, P.M. & Herman, R.K. Lethals, steriles and deficiencies in a region of the X chromosome of Caenorhabditis elegans. Genetics 92, 99–115 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  17. Johnson, S.M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005).

    CAS  PubMed  Google Scholar 

  18. Sampson, V.B. et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762–9770 (2007).

    CAS  PubMed  Google Scholar 

  19. Yu, F. et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109–1123 (2007).

    CAS  PubMed  Google Scholar 

  20. Viswanathan, S.R. et al. Lin28 promotes transformation and is associated with advanced human malignancies. Nat. Genet. 41, 843–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhu, H. et al. The Lin28/let-7 axis regulates glucose metabolism. Cell 147, 81–94 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol. Cell 32, 276–284 (2008).

    CAS  PubMed  Google Scholar 

  23. Viswanathan, S.R., Daley, G.Q. & Gregory, R.I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Nam, Y., Chen, C., Gregory, R.I., Chou, J.J. & Sliz, P. Molecular basis for interaction of let-7 microRNAs with Lin28. Cell 147, 1080–1091 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Piskounova, E. et al. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell 147, 1066–1079 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Faehnle, C.R., Walleshauser, J. & Joshua-Tor, L. Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature 514, 252–256 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Yuan, J., Nguyen, C.K., Liu, X., Kanellopoulou, C. & Muljo, S.A. Lin28b reprograms adult bone marrow hematopoietic progenitors to mediate fetal-like lymphopoiesis. Science 335, 1195–1200 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Cho, J. et al. LIN28A is a suppressor of ER-associated translation in embryonic stem cells. Cell 151, 765–777 (2012).

    CAS  PubMed  Google Scholar 

  29. Wilbert, M.L. et al. LIN28 binds messenger RNAs at GGAGA motifs and regulates splicing factor abundance. Mol. Cell 48, 195–206 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hafner, M. et al. Identification of mRNAs bound and regulated by human LIN28 proteins and molecular requirements for RNA recognition. RNA 19, 613–626 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Greaves, D.R., Wilson, F.D., Lang, G. & Kioussis, D. Human CD2 3′-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell 56, 979–986 (1989).

    CAS  PubMed  Google Scholar 

  32. Weinreich, M.A., Odumade, O.A., Jameson, S.C. & Hogquist, K.A. T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat. Immunol. 11, 709–716 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kreslavsky, T. et al. TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. Proc. Natl. Acad. Sci. USA 106, 12453–12458 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    CAS  PubMed  Google Scholar 

  35. Constantinides, M.G. & Bendelac, A. Transcriptional regulation of the NKT cell lineage. Curr. Opin. Immunol. 25, 161–167 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, Y.J., Holzapfel, K.L., Zhu, J., Jameson, S.C. & Hogquist, K.A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).

    CAS  PubMed  Google Scholar 

  37. Mooijaart, S.P. et al. C. elegans DAF-12, Nuclear hormone receptors and human longevity and disease at old age. Ageing Res. Rev. 4, 351–371 (2005).

    CAS  PubMed  Google Scholar 

  38. Shen, Y., Wollam, J., Magner, D., Karalay, O. & Antebi, A. A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338, 1472–1476 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Elewaut, D. et al. NIK-dependent RelB activation defines a unique signaling pathway for the development of Vα14i NKT cells. J. Exp. Med. 197, 1623–1633 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sivakumar, V., Hammond, K.J., Howells, N., Pfeffer, K. & Weih, F. Differential requirement for Rel/nuclear factor κ B family members in natural killer T cell development. J. Exp. Med. 197, 1613–1621 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mora, J.R., Iwata, M. & von Andrian, U.H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nat. Rev. Immunol. 8, 685–698 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. McVoy, L.A. & Kew, R.R. CD44 and annexin A2 mediate the C5a chemotactic cofactor function of the vitamin D binding protein. J. Immunol. 175, 4754–4760 (2005).

    CAS  PubMed  Google Scholar 

  43. Yu, S. & Cantorna, M.T. The vitamin D receptor is required for iNKT cell development. Proc. Natl. Acad. Sci. USA 105, 5207–5212 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu, S., Zhao, J. & Cantorna, M.T. Invariant NKT cell defects in vitamin D receptor knockout mice prevents experimental lung inflammation. J. Immunol. 187, 4907–4912 (2011).

    CAS  PubMed  Google Scholar 

  45. Egawa, T. & Littman, D.R. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat. Immunol. 9, 1131–1139 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Raberger, J. et al. The transcriptional regulator PLZF induces the development of CD44 high memory phenotype T cells. Proc. Natl. Acad. Sci. USA 105, 17919–17924 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Taylor and J.-H. Park for critical reading of the manuscript; G.Q. Daley (Harvard Medical School) for iLet7ΔLIN28 and M2rtTA double-transgenic mice; A. Bendelac (University of Chicago) for Zbtb16+/LU mice; the Tetramer Core Facility of the US National Institutes of Health for tetramer reagents; A. Adams and L. Granger for flow cytometry; and J.A. Williams (National Cancer Institute) for cDNA reagents. Supported by the Intramural Research Program of the US National Institutes of Health, the National Cancer Institute, Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

L.A.P. designed the study, performed experiments, analyzed data and contributed to the writing of the manuscript; R.E., S.J., T.K., T.M.M., M.Y.K., S.O.S. and T.I.G. performed experiments and analyzed data; A.A. and L.F. generated experimental mice; and A.S. designed the study, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Alfred Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Schema for construction of mixed–donor bone marrow chimeras.

Mixed donor bone marrow chimeras were constructed by injecting equal mixtures of wild-type and iLet7ΔLIN28 Tg bone marrow cells into lethally irradiated CD45.1 B6 host mice. Beginning on day 2 after chimera construction and continuing for 8 weeks when the mice were analyzed, mice were given either plain or doxycycline-supplemented drinking water.

Supplementary Figure 2 Effect of let-7 on NKT effector cell lineages in the periphery.

NKT cells from lymph nodes, spleen and liver were assessed for transcription factor expression by intracellular staining for PLZF vs RORγt and PLZF vs T-bet. Data represent a single experiment out of 3 independent experiments.

Supplementary Figure 3 Schematic model of NKT cell development in the thymus.

Upon positive selection of NKT cell precursors, PLZF expression is up-regulated to high levels and NKT differentiation proceeds. While CD44hiNK1.1-PLZFhi thymocytes are defined to be stage 2 thymocytes, our study suggests that stage 2 thymocytes actually consist of two different subsets at distinct stages of differentiation which we separate into immature intermediate cells and mature effector cells. Stage 2 intermediate cells terminally differentiate into IL-4-producing NKT2 effector cells and IL-17-producing NKT17 effector cells, or, alternatively, differentiate into IFN-γ-producing NKT1 effector cells. Differentiation of bi-potential stage 2 intermediate cells into NKT2, NKT17, or NKT1 cells depends on whether or not PLZF expression is down-regulated by let-7 miRNAs. If PLZF expression is not down-regulated, stage 2 intermediate cells terminally differentiate into NKT2 and NKT17 cells. If PLZF expression is down-regulated by let-7 miRNAs, stage 2 intermediate cells terminally differentiate into NKT1 cells. let-7 miRNAs can be up-regulated in the thymic medulla by IL-15, Vitamin D, and Retinoic Acid.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 1497 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pobezinsky, L., Etzensperger, R., Jeurling, S. et al. Let-7 microRNAs target the lineage-specific transcription factor PLZF to regulate terminal NKT cell differentiation and effector function. Nat Immunol 16, 517–524 (2015). https://doi.org/10.1038/ni.3146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3146

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing