Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

What causes mitochondrial DNA deletions in human cells?

Abstract

Mitochondrial DNA (mtDNA) deletions are a primary cause of mitochondrial disease and are likely to have a central role in the aging of postmitotic tissues. Understanding the mechanism of the formation and subsequent clonal expansion of these mtDNA deletions is an essential first step in trying to prevent their occurrence. We review the previous literature and recent results from our own laboratories, and conclude that mtDNA deletions are most likely to occur during repair of damaged mtDNA rather than during replication. This conclusion has important implications for prevention of mtDNA disease and, potentially, for our understanding of the aging process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram illustrating the proposed methods of mtDNA replication.
Figure 2: Diagram illustrating the previously proposed formation of an mtDNA deletion through a slipped-strand model of replication.
Figure 3
Figure 4: A simplified diagram of our proposed model for the generation of mtDNA deletions during repair of DSBs.
Figure 5: Proposed model showing how sporadic mtDNA deletions occur in the oocyte.

Similar content being viewed by others

References

  1. Holt, I.J., Harding, A.E. & Morgan-Hughes, J.A. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 331, 717–719 (1988).

    Article  CAS  Google Scholar 

  2. Shoffner, J.M. et al. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with a mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc. Natl. Acad. Sci. USA 86, 7952–7956 (1989).

    Article  CAS  Google Scholar 

  3. Goto, Y., Nonaka, I. & Horai, S. A mutation in the tRNA(Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 348, 651–653 (1990).

    Article  CAS  Google Scholar 

  4. Wallace, D.C. et al. Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell 55, 601–610 (1988).

    Article  CAS  Google Scholar 

  5. Schaefer, A.M. et al. The prevalence of mitochondrial DNA disease in adults. Ann. Neurol. 63, 35–39 (2008).

    Article  CAS  Google Scholar 

  6. Taylor, R.W. & Turnbull, D.M. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6, 389–402 (2005).

    Article  CAS  Google Scholar 

  7. Hudson, G. & Chinnery, P.F. Mitochondrial DNA polymerase-gamma and human disease. Human Molecular Genetics 15 (Spec. No. 2), R244–252 (2006).

    Article  CAS  Google Scholar 

  8. Bender, A. et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38, 515–517 (2006).

    Article  CAS  Google Scholar 

  9. Kraytsberg, Y. et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat. Genet. 38, 518–520 (2006).

    Article  CAS  Google Scholar 

  10. Sciacco, M., Bonilla, E., Schon, E.A., DiMauro, S. & Moraes, C.T. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum. Mol. Genet. 3, 13–19 (1994).

    Article  CAS  Google Scholar 

  11. Bua, E. et al. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am. J. Hum. Genet. 79, 469–480 (2006).

    Article  CAS  Google Scholar 

  12. Samuels, D.C., Schon, E.A. & Chinnery, P.F. Two direct repeats cause most human mtDNA deletions. Trends Genet. 20, 393–398 (2004).

    Article  CAS  Google Scholar 

  13. Reeve, A.K., Krishnan, K.J., Elson. J.L., Morris. C.M., Bender. A., Lightowlers. R.N. & Turnbull. D.M. Nature of mitochondrial DNA deletions in substantia nigra neurons. Am. J. Hum. Genet. 82, 228–235 (2008).

    Article  CAS  Google Scholar 

  14. Robberson, D.L. & Clayton, D.A. Replication of mitochondrial DNA in mouse L cells and their thymidine kinase - derivatives: displacement replication on a covalently-closed circular template. Proc. Natl. Acad. Sci. USA 69, 3810–3814 (1972).

    Article  CAS  Google Scholar 

  15. Yasukawa, T. et al. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J. 25, 5358–5371 (2006).

    Article  CAS  Google Scholar 

  16. Holt, I.J., Lorimer, H.E. & Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 100, 515–524 (2000).

    Article  CAS  Google Scholar 

  17. Yang, M.Y. et al. Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111, 495–505 (2002).

    Article  CAS  Google Scholar 

  18. Wang, G.J., Nutter, L.M. & Thayer, S.A. Insensitivity of cultured rat cortical neurons to mitochondrial DNA synthesis inhibitors: evidence for a slow turnover of mitochondrial DNA. Biochem. Pharmacol. 54, 181–187 (1997).

    Article  CAS  Google Scholar 

  19. Taylor, R.W. et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J. Clin. Invest. 112, 1351–1360 (2003).

    Article  CAS  Google Scholar 

  20. Haber, J.E. Partners and pathways repairing a double-strand break. Trends Genet. 16, 259–264 (2000).

    Article  CAS  Google Scholar 

  21. Bowmaker, M. et al. Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J. Biol. Chem. 278, 50961–50969 (2003).

    Article  CAS  Google Scholar 

  22. Wanrooij, S. et al. Twinkle and POLG defects enhance age-dependent accumulation of mutations in the control region of mtDNA. Nucleic Acids Res. 32, 3053–3064 (2004).

    Article  CAS  Google Scholar 

  23. Nguyen, L.H., Erzberger, J.P., Root, J. & Wilson, D.M., III . The human homolog of Escherichia coli Orn degrades small single-stranded RNA and DNA oligomers. J. Biol. Chem. 275, 25900–25906 (2000).

    Article  CAS  Google Scholar 

  24. Hanekamp, T. & Thorsness, P.E. YNT20, a bypass suppressor of yme1 yme2, encodes a putative 3′-5′ exonuclease localized in mitochondria of Saccharomyces cerevisiae. Curr. Genet. 34, 438–448 (1999).

    Article  CAS  Google Scholar 

  25. Barnerias, C. et al. Respiratory chain deficiency in a female with Aicardi-Goutieres syndrome. Dev. Med. Child Neurol. 48, 227–230 (2006).

    Article  Google Scholar 

  26. Crow, Y.J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    Article  CAS  Google Scholar 

  27. Horiguchi, M. et al. Molecular nature of ultraviolet B light-induced deletions in the murine epidermis. Cancer Res. 61, 3913–3918 (2001).

    CAS  PubMed  Google Scholar 

  28. Sargentini, N.J. & Smith, K.C. Involvement of RecB-mediated (but not RecF-mediated) repair of DNA double-strand breaks in the gamma-radiation production of long deletions in Escherichia coli. Mutat. Res. 265, 83–101 (1992).

    Article  CAS  Google Scholar 

  29. Thacker, J., Chalk, J., Ganesh, A. & North, P. A mechanism for deletion formation in DNA by human cell extracts: the involvement of short sequence repeats. Nucleic Acids Res. 20, 6183–6188 (1992).

    Article  CAS  Google Scholar 

  30. Srivastava, S. & Moraes, C.T. Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum. Mol. Genet. 14, 893–902 (2005).

    Article  CAS  Google Scholar 

  31. Wanrooij, S., Goffart, S., Pohjoismaki, J.L., Yasukawa, T. & Spelbrink, J.N. Expression of catalytic mutants of the mtDNA helicase Twinkle and polymerase POLG causes distinct replication stalling phenotypes. Nucleic Acids Res. 35, 3238–3251 (2007).

    Article  CAS  Google Scholar 

  32. Van Goethem, G. et al. Unusual presentation and clinical variability in Belgian pedigrees with progressive external ophthalmoplegia and multiple deletions of mitochondrial DNA. Eur. J. Neurol. 4, 476–484 (1997).

    Article  Google Scholar 

  33. Esposito, L.A., Melov, S., Panov, A., Cottrell, B.A. & Wallace, D.C. Mitochondrial disease in mouse results in increased oxidative stress. Proc. Natl. Acad. Sci. USA 96, 4820–4825 (1999).

    Article  CAS  Google Scholar 

  34. Berneburg, M. et al. Singlet oxygen mediates the UVA-induced generation of the photoaging-associated mitochondrial common deletion. J. Biol. Chem. 274, 15345–15349 (1999).

    Article  CAS  Google Scholar 

  35. Krishnan, K.J., Harbottle, A. & Birch-Machin, M.A. The use of a 3895 bp mitochondrial DNA deletion as a marker for sunlight exposure in human skin. J. Invest. Dermatol. 123, 1020–1024 (2004).

    Article  CAS  Google Scholar 

  36. Murphy, J.E., Nugent, S., Seymour, C. & Mothersill, C. Mitochondrial DNA point mutations and a novel deletion induced by direct low-LET radiation and by medium from irradiated cells. Mutat. Res. 585, 127–136 (2005).

    Article  CAS  Google Scholar 

  37. Prithivirajsingh, S. et al. Accumulation of the common mitochondrial DNA deletion induced by ionizing radiation. FEBS Lett. 571, 227–232 (2004).

    Article  CAS  Google Scholar 

  38. Halliwell, B. Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623 (1992).

    Article  CAS  Google Scholar 

  39. Arai, T. et al. Up-regulation of hMUTYH, a DNA repair enzyme, in the mitochondria of substantia nigra in Parkinson's disease. Acta Neuropathol. (Berl.) 112, 139–145 (2006).

    Article  CAS  Google Scholar 

  40. DeGrey, A.D. A proposed refinement of the mitochondrial free radical theory of aging. Bioessays 19, 161–166 (1997).

    Article  CAS  Google Scholar 

  41. Elson, J.L., Samuels, D.C., Turnbull, D.M. & Chinnery, P.F. Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am. J. Hum. Genet. 68, 802–806 (2001).

    Article  CAS  Google Scholar 

  42. Wallace, D.C. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256, 628–632 (1992).

    Article  CAS  Google Scholar 

  43. Yoneda, M., Chomyn, A., Martinuzzi, A., Hurko, O. & Attardi, G. Marked replicative advantage of human mtDNA carrying a point mutation that causes the MELAS encephalomyopathy. Proc. Natl. Acad. Sci. USA 89, 11164–11168 (1992).

    Article  CAS  Google Scholar 

  44. Chinnery, P.F. et al. Risk of developing a mitochondrial DNA deletion disorder. Lancet 364, 592–596 (2004).

    Article  CAS  Google Scholar 

  45. Blakely, E.L. et al. Mitochondrial DNA deletion in “identical” twin brothers. J. Med. Genet. 41, e19 (2004).

    Article  CAS  Google Scholar 

  46. Barritt, J.A., Brenner, C.A., Cohen, J. & Matt, D.W. Mitochondrial DNA rearrangements in human oocytes and embryos. Mol. Hum. Reprod. 5, 927–933 (1999).

    Article  CAS  Google Scholar 

  47. Chan, C.C. et al. Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. Mol. Hum. Reprod. 11, 843–846 (2005).

    Article  CAS  Google Scholar 

  48. Chen, X. et al. Rearranged mitochondrial genomes are present in human oocytes. Am. J. Hum. Genet. 57, 239–247 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge financial support from the Alzheimer's Research Trust, the Wellcome Trust, EUMitocombat and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, K., Reeve, A., Samuels, D. et al. What causes mitochondrial DNA deletions in human cells?. Nat Genet 40, 275–279 (2008). https://doi.org/10.1038/ng.f.94

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.f.94

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing