Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia

A Corrigendum to this article was published on 30 July 2009

Abstract

Although the role of Hedgehog (Hh) signalling in embryonic pattern formation is well established1, its functions in adult tissue renewal and maintenance remain unclear, and the relationship of these functions to cancer development has not been determined. Here we show that the loss of Smoothened (Smo), an essential component of the Hh pathway2, impairs haematopoietic stem cell renewal and decreases induction of chronic myelogenous leukaemia (CML) by the BCR–ABL1 oncoprotein3. Loss of Smo causes depletion of CML stem cells—the cells that propagate the leukaemia—whereas constitutively active Smo augments CML stem cell number and accelerates disease. As a possible mechanism for Smo action, we show that the cell fate determinant Numb, which depletes CML stem cells, is increased in the absence of Smo activity. Furthermore, pharmacological inhibition of Hh signalling impairs not only the propagation of CML driven by wild-type BCR–ABL1, but also the growth of imatinib-resistant mouse and human CML. These data indicate that Hh pathway activity is required for maintenance of normal and neoplastic stem cells of the haematopoietic system and raise the possibility that the drug resistance and disease recurrence associated with imatinib treatment of CML4,5 might be avoided by targeting this essential stem cell maintenance pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional deletion of Smo impairs the development of BCR–ABL1-induced CML and depletes CML stem cells.
Figure 2: The presence of constitutively active Smo increases the frequency of CML stem cells and accelerates disease.
Figure 3: Loss of Smo increases frequency of cells with high levels of Numb and contributes to decreased CML growth.
Figure 4: Pharmacological inhibition of Smo impairs CML development and propagation.

Similar content being viewed by others

References

  1. Ingham, P. W. & Placzek, M. Orchestrating ontogenesis: variations on a theme by sonic hedgehog. Nature Rev. Genet. 7, 841–850 (2006)

    Article  CAS  PubMed  Google Scholar 

  2. Rohatgi, R. & Scott, M. P. Patching the gaps in Hedgehog signalling. Nature Cell Biol. 9, 1005–1009 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Ren, R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nature Rev. Cancer 5, 172–183 (2005)

    Article  CAS  Google Scholar 

  4. Gorre, M. E. et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876–880 (2001)

    Article  CAS  PubMed  Google Scholar 

  5. Graham, S. M. et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro . Blood 99, 319–325 (2002)

    Article  CAS  PubMed  Google Scholar 

  6. Hu, Y. et al. Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc. Natl Acad. Sci. USA 103, 16870–16875 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jorgensen, H. G., Allan, E. K., Jordanides, N. E., Mountford, J. C. & Holyoake, T. L. Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood 109, 4016–4019 (2007)

    Article  CAS  PubMed  Google Scholar 

  8. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Taipale, J. & Beachy, P. A. The Hedgehog and Wnt signalling pathways in cancer. Nature 411, 349–354 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Evangelista, M., Tian, H. & de Sauvage, F. J. The hedgehog signaling pathway in cancer. Clin. Cancer Res. 12, 5924–5928 (2006)

    Article  CAS  PubMed  Google Scholar 

  11. Long, F., Zhang, X. M., Karp, S., Yang, Y. & McMahon, A. P. Genetic manipulation of hedgehog signaling in the endochondral skeleton reveals a direct role in the regulation of chondrocyte proliferation. Development 128, 5099–5108 (2001)

    CAS  PubMed  Google Scholar 

  12. Zhao, C. et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo . Cancer Cell 12, 528–541 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daley, G. Q., Van Etten, R. A. & Baltimore, D. Induction of chronic myelogenous leukemia in mice by the P210 bcr/abl gene of the Philadelphia chromosome. Science 247, 824–830 (1990)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Mao, J. et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res. 66, 10171–10178 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu, M. et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 1, 541–554 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, J. K., Taipale, J., Cooper, M. K. & Beachy, P. A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thayer, S. P. et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851–856 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Watkins, D. N. et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422, 313–317 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. O’Hare, T., Corbin, A. S. & Druker, B. J. Targeted CML therapy: controlling drug resistance, seeking cure. Curr. Opin. Genet. Dev. 16, 92–99 (2006)

    Article  PubMed  Google Scholar 

  20. Azam, M., Latek, R. R. & Daley, G. Q. Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL . Cell 112, 831–843 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. Bhardwaj, G. et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nature Immunol. 2, 172–180 (2001)

    Article  CAS  Google Scholar 

  22. Balordi, F. & Fishell, G. Mosaic removal of hedgehog signaling in the adult SVZ reveals that the residual wild-type stem cells have a limited capacity for self-renewal. J. Neurosci. 27, 14248–14259 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Han, Y. G. et al. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nature Neurosci. 11, 277–284 (2008)

    Article  CAS  PubMed  Google Scholar 

  24. Goodrich, L. V., Milenkovic, L., Higgins, K. M. & Scott, M. P. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277, 1109–1113 (1997)

    Article  CAS  PubMed  Google Scholar 

  25. Johnson, R. L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 272, 1668–1671 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Dierks, C. et al. Essential role of stromally induced hedgehog signaling in B-cell malignancies. Nature Med. 13, 944–951 (2007)

    Article  CAS  PubMed  Google Scholar 

  27. Peacock, C. D. et al. Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc. Natl Acad. Sci. USA 104, 4048–4053 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L. & Strasser, A. Tumor growth need not be driven by rare cancer stem cells. Science 317, 337 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Kennedy, J. A., Barabe, F., Poeppl, A. G., Wang, J. C. & Dick, J. E. Comment on “Tumor growth need not be driven by rare cancer stem cells”. Science 318 1722 10.1126/science.1149590 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Adams, J. M., Kelly, P. N., Dakic, A., Nutt, S. L. & Strasser, A. Reply. Science 318 1722 10.1126/science.1149672 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Wechsler-Reya for critical advice, D. Kioussis for Vav-Cre transgenic mice, A. M. Pendergast, A. Means and B. Hogan for review of the manuscript, S. Li for advice on mouse CML experiments, G. Daley, M. Azam and S. Li for the T315I BCR–ABL1 construct, B. Harvat for cell sorting, and J. Harris, B. Zimdahl, N. D’Amato and S. Honeycutt for experimental help. T.R. is a recipient of a CRI Investigator Award, an EMF New Scholar award and a Leukemia and Lymphoma Society Scholar Award, M.F. is supported by the Duke Molecular Cancer Biology Training grant and C.H.J. is funded by the California Institute of Regenerative Medicine and a sponsored research agreement with Pfizer. This work was also supported by National Institutes of Health grants DK63031, DK072234, AI067798 and the Lisa Stafford Memorial Prize to T.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tannishtha Reya.

Ethics declarations

Competing interests

[Competing Interests: C.H.J. receives research support from Pfizer Inc., and is a consultant for Wintherix. T.V.A. and M.M. are employed by Pfizer Inc. D.R. receives research support from Novartis, Bristol Myers Squibb and Ariad. P.A.B. is a consultant for Fate Therapeutics and holds stock options or stock in Fate and Curis.]

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-13 with Legends (PDF 413 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, C., Chen, A., Jamieson, C. et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458, 776–779 (2009). https://doi.org/10.1038/nature07737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07737

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing