Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct evidence for atomic defects in graphene layers

Abstract

Atomic-scale defects in graphene layers alter the physical and chemical properties of carbon nanostructures1,2. Theoretical predictions have recently shown that energetic particles such as electrons and ions can induce polymorphic atomic defects in graphene layers as a result of knock-on atom displacements3,4. However, the number of experimental reports on these defects is limited5,6. The graphite network in single-walled carbon nanotubes has been visualized by transmission electron microscopy (TEM) and their chiral indices have been determined7,8. But the methods used require a long image acquisition time and intensive numerical treatments after observations to find an ‘average’ image, which prevents the accurate detection and investigation of defect structures. Here we report observations in situ of defect formation in single graphene layers by high-resolution TEM. The observed structures are expected to be of use when engineering the properties of carbon nanostructures for specific device applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chiral index determination of SWNTs.
Figure 2: In situ observation of a topological defect induced in a graphene layer.
Figure 3: In situ observation of vacancy formation in a graphene layer.
Figure 4: In situ observation of adatom–vacancy pair formation.

Similar content being viewed by others

References

  1. Hansson, A., Paulsson, M. & Stafström, S. Effect of bending and vacancies on the conductance of carbon nanotubes. Phys. Rev. B 62, 7639–7644 (2000)

    Article  ADS  CAS  Google Scholar 

  2. Ewels, C. P., Heggie, M. I. & Briddon, P. R. Adatoms and nanoengineering of carbon. Chem. Phys. Lett. 351, 178–182 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Nordlund, K., Keinonen, J. & Mattila, T. Formation of ion irradiation induced small-scale defects on graphite surfaces. Phys. Rev. Lett. 77, 699–702 (1996)

    Article  ADS  CAS  Google Scholar 

  4. Krasheninnikov, A. V., Nordlund, K., Sirviö, M., Salonen, E. & Keinonen, J. Formation of ion-irradiation-induced atomic-scale defects on walls of carbon nanotubes. Phys. Rev. B 63, 245405 (2001)

    Article  ADS  Google Scholar 

  5. Kelly, K. F. & Halas, N. J. Determination of α and β site defects on graphite using C60-adsorbed STM tips. Surf. Sci. 416, L1085–L1089 (1998)

    Article  ADS  CAS  Google Scholar 

  6. Ouyang, M., Huang, J.-L., Cheung, C. L. & Lieber, C. M. Atomically resolved single-walled carbon nanotube intramolecular junctions. Science 291, 97–100 (2001)

    Article  ADS  CAS  Google Scholar 

  7. Meyer, R. R. et al. A composite method for the determination of the chirality of single walled carbon nanotube. J. Microsc. 212, 152–157 (2003)

    Article  MathSciNet  CAS  Google Scholar 

  8. Zuo, J. M., Vartanyants, I., Gao, M., Zhang, R. & Nagahara, L. A. Atomic resolution imaging of a carbon nanotube from diffraction intensities. Science 300, 1419–1421 (2003)

    Article  ADS  CAS  Google Scholar 

  9. Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986)

    Article  ADS  CAS  Google Scholar 

  10. Telling, R. H., Ewels, C. P., El-Barbary, A. A. & Heggie, M. I. Wigner defects bridge the graphite gap. Nature Mater. 2, 333–337 (2003)

    Article  ADS  CAS  Google Scholar 

  11. El-Barbary, A. A., Telling, R. H., Ewels, C. P., Heggie, M. I. & Briddon, P. R. Structure and energetics of the vacancy in graphite. Phys. Rev. B 68, 144107 (2003)

    Article  ADS  Google Scholar 

  12. Krasheninnikov, A. V. et al. Adsorption and migration of carbon adatoms on carbon nanotubes: Density-functional ab initio and tight-binding studies. Phys. Rev. B 69, 073402 (2004)

    Article  ADS  Google Scholar 

  13. Ewels, C. P., Telling, R. H., El-Barbary, A. A., Heggie, M. I. & Briddon, P. R. Metastable Frenkel pair defect in graphite: Source of Wigner energy? Phys. Rev. Lett. 91, 25505 (2003)

    Article  ADS  CAS  Google Scholar 

  14. Lehtinen, P. O. et al. Magnetic properties and diffusion of adatoms on a graphene sheet. Phys. Rev. Lett. 91, 17202 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Kociak, M., Hirahara, K., Suenaga, K. & Iijima, S. How accurate can the determination of chiral indices of carbon nanotubes be? Eur. Phys. J. B 32, 457–469 (2003)

    Article  ADS  CAS  Google Scholar 

  16. Ajayan, P. M., Ravikumar, V. & Charlier, J.-C. Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 81, 1437–1440 (1998)

    Article  ADS  CAS  Google Scholar 

  17. Smith, B. W. & Luzzi, D. E. Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509–3515 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Iijima, S. et al. Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309, 165–170 (1999)

    Article  ADS  CAS  Google Scholar 

  19. Yakobson, B. I., Samsonidze, G. & Samsonidze, G. G. Atomistic theory of mechanical relaxation in fullerene nanotubes. Carbon 38, 1675–1680 (2000)

    Article  CAS  Google Scholar 

  20. Banhart, F. Irradiation effects in carbon nanostructures. Rep. Prog. Phys. 62, 1181–1221 (1999)

    Article  ADS  CAS  Google Scholar 

  21. Hahn, J. R., Kang, H., Song, S. & Jeon, I. C. Observation of charge enhancement induced by graphite atomic vacancy: A comparative STM and AFM study. Phys. Rev. B 53, R1725–R1728 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Orlikowski, D., Buongiorno Nardelli, M., Bernholc, J. & Roland, C. Theoretical STM signatures and transport properties of native defects in carbon nanotubes. Phys. Rev. B 61, 14194–14203 (2000)

    Article  ADS  CAS  Google Scholar 

  23. Asari, E., Kitajima, M., Nakamura, K. G. & Kawabe, T. Thermal relaxation of ion-irradiation damage in graphite. Phys. Rev. B 47, 11143–11148 (1993)

    Article  ADS  CAS  Google Scholar 

  24. Hjort, M. & Stafström, S. Modeling vacancies in graphite via the Hückel method. Phys. Rev. B 61, 14089–14094 (2000)

    Article  ADS  CAS  Google Scholar 

  25. Krasheninnikov, A. V., Nordlund, K. & Keinonen, J. Production of defects in supported carbon nanotubes under ion irradiation. Phys. Rev. B 65, 165423 (2002)

    Article  ADS  Google Scholar 

  26. Lu, A. J. & Pan, B. C. Nature of single vacancy in achiral carbon nanotubes. Phys. Rev. Lett. 92, 105504 (2004)

    Article  ADS  CAS  Google Scholar 

  27. Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998)

    Article  ADS  Google Scholar 

  28. Odom, T. W., Huang, J.-L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391, 62–64 (1998)

    Article  ADS  CAS  Google Scholar 

  29. Kociak, M. et al. Linking chiral indices and transport properties of double-walled carbon nanotubes. Phys. Rev. Lett. 81, 155501 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Kociak for his instructions on the chiral index determination of SWNTs; C. Ewels and Y. Miyamoto for discussions on defective carbon structures; and M. Yudasaka and S. Bandow for help with specimen preparation. Work on HR-TEM is supported by the NEDO Nano-Carbon Technology project. A.H. was supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazu Suenaga.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Information Fig.S1 - S3

Fig.S1: Contrast transfer function chosen to enhance contrast made of the zig-zag chain (bottom inset) and a taken HR-TEM image of a SWNT; Fig.S2: A fast Fourier transform of the presented HR-TEM image of a graphene layer for the defocus value confirmation; Fig.S3: Relationship between the true diameter and the apparent diameter. (DOC 504 kb)

Supplementary Movie 1

A sequential HR-TEM images of the vacancy formation. See Fig. 3 and its captions. The bright spots correspond to the vacancies. (GIF 733 kb)

Supplementary Movie 2

A sequential HR-TEM images of the vacancy and adatom formation on a SWNT. One can see the bright spots as the vacancies. The dark spots moving around correspond to the carbon adatoms. See Fig. 4 and its captions. (GIF 671 kb)

Supplementary Movie 3

Another sequential HR-TEM images of the vacancy and adatom formation. (GIF 1244 kb)

Supplementary Movie 4

A sequential HR-TEM images presenting the formation of adatom/di-vacancy combination before collapse. See Fig. 4b, 4c and 4d. (GIF 187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, A., Suenaga, K., Gloter, A. et al. Direct evidence for atomic defects in graphene layers. Nature 430, 870–873 (2004). https://doi.org/10.1038/nature02817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature02817

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing