Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Allografting

HLA-E upregulation on IFN-γ-activated AML blasts impairs CD94/NKG2A-dependent NK cytolysis after haplo-mismatched hematopoietic SCT

Abstract

Natural killer (NK) cells generated after haploidentical hematopoietic SCT in patients with AML are characterized by specific phenotypic features and impaired functioning that may affect transplantation outcome. We show that IFN-γ produced by immature CD56bright NK cells upregulates cell surface expression of HLA-E on AML blasts and that this upregulation protects leukemic cells from NK-mediated cell lysis through the mediation of CD94/NKG2A, an inhibitory receptor overexpressed on NK cells after haploidentical SCT. Two years after transplantation, however, maturing NK cells were functionally active, as evidenced by high cytotoxicity and poor IFN-γ production. This implies that maturation of NK cells is the key to improved immune responses and transplantation outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Lanier LL . NK cell recognition. Annu Rev Immunol 2005; 23: 225–274.

    Article  CAS  PubMed  Google Scholar 

  2. Moretta L, Bottino C, Pende D, Vitale M, Mingari MC, Moretta A . Human natural killer cells: molecular mechanisms controlling NK cell activation and tumor cell lysis. Immunol Lett 2005; 100: 7–13.

    Article  CAS  PubMed  Google Scholar 

  3. Hallet WH, Murphy WJ . Positive and negative regulation of Natural Killer cells: therapeutic implications. Semin Cancer Biol 2006; 16: 367–382.

    Article  Google Scholar 

  4. López-Botet M, Llano M, Navarro F, Bellón T . NK cell recognition of non-classical HLA class I molecules. Semin Immunol 2000; 12: 109–119.

    Article  PubMed  Google Scholar 

  5. Long EO, Rajagopalan S . HLA class I recognition by killer cell Ig-like receptors. Semin Immunol 2000; 12: 101–118.

    Article  CAS  PubMed  Google Scholar 

  6. Braud VM, Allan DS, O'Callaghan CA, Söderström K, D'Andrea A, Ogg GS et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998; 391: 795–799.

    Article  CAS  PubMed  Google Scholar 

  7. Freud AG, Caligiuri MA . Human natural killer development. Immunol Rev 2006; 214: 56–72.

    Article  CAS  PubMed  Google Scholar 

  8. Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH . The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 1986; 136: 4480–4486.

    CAS  PubMed  Google Scholar 

  9. Cooper MA, Fehniger TA, Caligiuri MA . The biology of human natural killer-cell subsets. Trends Immunol 2001; 11: 633–640.

    Article  Google Scholar 

  10. Nguyen S, Dhedin N, Vernant JP, Kuentz M, Al Jijakli A, Rouas-Freiss N et al. NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations: immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood 2005; 105: 4135–4142.

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen S, Kuentz M, Vernant JP, Dhedin N, Bories D, Debré P et al. stem-cell transplantation. Leukemia 2008; 22: 344–352.

    Article  CAS  PubMed  Google Scholar 

  12. Shilling HG, McQueen KL, Cheng NW, Shizuru JA, Negrin RS, Parham P . Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation. Blood 2003; 101: 3730–3740.

    Article  CAS  PubMed  Google Scholar 

  13. Cooley S, McCullar V, Wangen R, Bergemann TL, Spellman S, Weisdorf DJ et al. KIR reconstitution is altered by T cells in the graft and correlates with clinical outcomes after unrelated donor transplantation. Blood 2005; 106: 4370–4376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cooley S, Xiao F, Pitt M, Gleason M, McCullar V, Bergemann TL et al. A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature. Blood 2007; 110: 578–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee N, Llano M, Carretero M, Ishitani A, Navarro F, López-Botet M et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA 1998; 95: 5199–5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lanier LL . Follow the leader: NK cell receptors for classical and nonclassical MHC class I. Cell 1998; 92: 705–707.

    Article  CAS  PubMed  Google Scholar 

  17. Malmberg KJ, Levitsky V, Norell H, de Matos CT, Carlsten M, Schedvins K et al. IFN-γ protects short-term ovarian carcinoma cell lines from CTL lysis via a CD94/NKG2A-dependent mechanism. J Clin Invest 2002; 110: 1515–1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gustafson KS, Ginder GD . Interferon-gamma induction of the human leukocyte antigen-E gene is mediated through binding of a complex containing STAT1alpha to a distinct interferon-gamma-responsive element. J Biol Chem 1996; 271: 20035–20046.

    Article  CAS  PubMed  Google Scholar 

  19. Marusina AI, Kim DK, Lieto LD, Borrego F, Coligan JE . GATA-3 is an important transcription factor for regulating human NKG2A gene expression. J Immunol 2005; 174: 2152–2159.

    Article  CAS  PubMed  Google Scholar 

  20. Borrego F, Ulbrecht M, Weiss EH, Coligan JE, Brooks AG . Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J Exp Med 1998; 187: 813–818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001; 410: 1107–1111.

    Article  CAS  PubMed  Google Scholar 

  22. Derre L, Corvaisier M, Charreau B, Moreau A, Godefroy E, Moreau-Aubry A et al. Expression and release of HLA-E by melanoma cells and melanocytes: potential impact on the response of cytotoxic effect cells. J Immunol 2006; 177: 3100–3107.

    Article  CAS  PubMed  Google Scholar 

  23. Tomasec P, Braud VM, Rickards C, Powell MB, McSharry BP, Gadola S et al. Surface expression of HLA-E, an inhibitor of natural killer cells, enhanced by human cytomegalovirus gpUL40. Science 2000; 287: 1031.

    Article  CAS  PubMed  Google Scholar 

  24. Ulbrecht M, Martinozzi S, Grzeschik M, Hengel H, Ellwart JW, Pla M et al. Cutting edge: the human cytomegalovirus UL40 gene product contains a ligand for HLA-E and prevents NK cell-mediated lysis. J Immunol 2000; 164: 5019–5022.

    Article  CAS  PubMed  Google Scholar 

  25. Cerboni C, Mousavi-Jazi M, Wakiguchi H, Carbone E, Kärre K, Söderström K . Synergistic effect of IFN-gamma and human cytomegalovirus protein UL40 in the HLA-E-dependent protection from NK cell-mediated cytotoxicity. Eur J Immunol 2001; 31: 2926–2935.

    Article  CAS  PubMed  Google Scholar 

  26. Moser JM, Gibbs J, Jensen PE, Lukacher AE . CD94-NKG2A receptors regulate antiviral CD8(+) T cell responses. Nat Immunol 2002; 3: 189–195.

    Article  CAS  PubMed  Google Scholar 

  27. Antin JH, Ferrara JL . Cytokine dysregulation and acute graft-versus-host disease. Blood 1992; 80: 2964–2968.

    CAS  PubMed  Google Scholar 

  28. Yang YG, Wang H, Asavaroengchai W, Dey BR . Role of Interferon-gamma in GVHD and GVL. Cell Mol Immunol 2005; 2: 323–329.

    CAS  PubMed  Google Scholar 

  29. Valés-Gómez M, Reyburn HT, Erskine RA, López-Botet M, Strominger JL . Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E. EMBO J 1999; 18: 4250–4260.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Di Santo JP . Natural killer cell developmental pathways: a question of balance. Annu Rev Immunol 2006; 24: 257–286.

    Article  CAS  PubMed  Google Scholar 

  31. Yoon SR, Chung JW, Choi I . Development of natural killer cells from hematopoietic stem cells. Mol Cells 2007; 24: 1–8.

    CAS  PubMed  Google Scholar 

  32. Bornhauser M, Schwerdtfeger R, Martin H, Frank KH, Theuser C, Ehninger G . Role of KIR ligand incompatibility in hematopoietic stem-cell transplantation using unrelated donors. Blood 2004; 103: 2860–2861.

    Article  PubMed  Google Scholar 

  33. Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kühne T et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 2004; 18: 1835–1838.

    Article  CAS  PubMed  Google Scholar 

  34. Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 2005; 105: 3051–3057.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge grant support received from the French Health Ministry (PHRC 1995) and from the association Cent pour Sang la Vie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Vieillard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, S., Beziat, V., Dhedin, N. et al. HLA-E upregulation on IFN-γ-activated AML blasts impairs CD94/NKG2A-dependent NK cytolysis after haplo-mismatched hematopoietic SCT. Bone Marrow Transplant 43, 693–699 (2009). https://doi.org/10.1038/bmt.2008.380

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/bmt.2008.380

Keywords

This article is cited by

Search

Quick links