Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Supramolecular assembly and acid resistance of Helicobacter pylori urease

Abstract

Helicobacter pylori, an etiologic agent in a variety of gastroduodenal diseases, produces a large amount of urease, which is believed to neutralize gastric acid by producing ammonia for the survival of the bacteria. Up to 30% of the enzyme associates with the surface of intact cells upon lysis of neighboring bacteria. The role of the enzyme at the extracellular location has been a subject of controversy because the purified enzyme is irreversibly inactivated below pH 5. We have determined the crystal structure of H. pylori urease, which has a 1.1 MDa spherical assembly of 12 catalytic units with an outer diameter of 160 Å. Under physiologically relevant conditions, the activity of the enzyme remains unaffected down to pH 3. Activity assays under different conditions indicated that the cluster of the 12 active sites on the supramolecular assembly may be critical for the survival of the enzyme at low pH. The structure provides a novel example of a molecular assembly adapted for acid resistance that, together with the low Km value of the enzyme, is likely to enable the organism to inhabit the hostile niche.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of H. pylori urease.
Figure 2: Acid resistance of H. pylori urease.
Figure 3: The flap and the active site of H. pylori urease.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Graham, D.Y. et al. Gastroenterology 199, 1495–1501 (1991).

    Article  Google Scholar 

  2. Eaton, K.A., Brooks, C.L., Morgan, D.R. & Krakowka, S. Infect. Immun. 59, 2470–2475 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Covacci, A., Telford, J.L., Del Giudice, G., Parsonnet, J. & Rappuoli, R. Science 284, 1328–1333 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Mobley, H.L., Island, M.D. & Hausinger, R.P. Microbiol. Rev. 59, 451–480 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Phadnis, S.H. et al. Infect. Immun. 64, 905–912 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Krishnamurthy, P. et al. Infect. Immun. 66, 5060–5066 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dunn, B.E. et al. Infect. Immun. 65, 1181–1188 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott, D.R. et al. Gastroenterology 114, 58–70 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Weeks, D.L., Eskandari, S., Scott, D.R. & Sachs, G. Science 287, 482–485 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Bauerfeind, P., Garner, R., Dunn, B.E. & Mobley, H.L. Gut 40, 25–30 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hu, L.T. & Mobley, H.L. Infect. Immun. 58, 992–998 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Evans, D.J.J., Evans, D.G., Kirkpatrick, S.S. & Graham, D.Y. Microb. Pathog. 10, 15–26 (1991).

    Article  CAS  PubMed  Google Scholar 

  13. Turbett, G.R., Hoj, P.B., Horne, R. & Mee, B.J. Infect. Immun. 60, 5259–5266 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Austin, J.W., Doig, P., Stewart, M. & Trust, T.J. J. Bacteriol. 174, 7470–7473 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jabri, E., Carr, M.B., Hausinger, R.P. & Karplus, P.A. Science 268, 998–1004 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Benini, S. et al. Structure Fold. Des. 7, 205–216 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Xu, Z., Horwich, A.L. & Sigler, P.B. Nature 388, 741–750 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Kleywegt, G.J. & Jounes, T.A. Acta Crystallogr. D 50, 178–185 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Todd, M.J. & Hausinger, R.P. J. Biol. Chem. 266, 24327–24331 (1991).

    CAS  PubMed  Google Scholar 

  20. Dunn, B.E., Campbell, G.P., Perez-Perez, G.I. & Blaser, M.J. J. Biol. Chem. 265, 9464–9469 (1990).

    CAS  PubMed  Google Scholar 

  21. Park, I.S. & Hausinger, R.P. Protein Sci. 2, 1034–1041 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Morsdorf, G. & Kaltwasser, H. Arch. Microbiol. 152, 125–131 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Benini, S. et al. J. Biol. Inorg. Chem. 5, 110–118 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Pearson, M.A. et al. Biochemistry 39, 8575–8584 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Hu, L.T. & Mobley, H.L. Infect. Immun. 61, 2563–2569 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Todd, M.J. & Hausinger, R.P. J. Biol. Chem. 262, 5963–5967 (1987).

    CAS  PubMed  Google Scholar 

  27. Otwinowski, Z. & Minor, W. Methods Enzymol. 276 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Navaza, J. Acta Crystallogr. A 50, 157–163 (1994).

    Article  Google Scholar 

  29. Brünger, A.T. et al. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  30. Jones, T.A. & Zou, J.Y. Acta Crystallogr. A 47, 110–119 (1991).

    Article  PubMed  Google Scholar 

  31. Hamilton-Miller, J.M.T. & Gargan, R.A. Invest. Urol. 16, 327–328 (1979).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank H. L. Mobley for the generous gift of the E. coli strain containing plasmids pHP808 and pHP902. We also thank the staff members at the Photon Factory beamline BL6A (Japan). We gratefully acknowledge the permission by T. J. Trust and the Journal of Bacteriology to use the TEM image of H. pylori urease as an inset in Fig. 1c. This study used the X-ray facility at Pohang Light Source (Korea) and was supported by Creative Research Initiatives of the Korean Ministry of Science and Technology and in part by a grant from Dong-Wha Pharmaceutical Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Ha Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, NC., Oh, ST., Sung, J. et al. Supramolecular assembly and acid resistance of Helicobacter pylori urease. Nat Struct Mol Biol 8, 505–509 (2001). https://doi.org/10.1038/88563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/88563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing