Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes

Abstract

THE nitrogen pools of animals are enriched in 15N relative to their food1, with the top predators having the highest concentrations of this stable isotope2. The use of δ15N to indicate trophic position depends on the degree to which it reflects variation in the underly-ing food-web structure, rather than variable fractionation along the food chain. Here we compare adult lake trout, a top pelagic predator, from a series of lakes, and find that δ15N values vary from 7.5 to 17.5%o, a surprisingly wide range for one species. The length of the food chain can explain this variation, supporting the idea that δ15N is a food-web descriptor. Food-chain length was measured by the presence or absence of two intermediate trophic levels, pelagic forage fish and the macrozooplankter, Mysis relicta, each of which when present contributes about three δ15N units to the trout signature. We find that δ15N can be used as a continuous, integrative measure of trophic position, which is supported by its correlation to mercury levels in lake trout.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Minigawa, M. & Wada, E. Geochim. cosmochim. Acta 48, 1135–1140 (1984).

    Article  ADS  Google Scholar 

  2. Owens, N. J. P. Adv. Mar. Biol. 24, 389–451 (1987).

    Article  Google Scholar 

  3. Peterson, B. J. & Fry, B. A. Rev. ecol. Syst. 18, 293–320 (1987).

    Article  Google Scholar 

  4. Fry, B. Limnol. Oceanogr. 33, 1182–1190 (1988).

    Article  ADS  CAS  Google Scholar 

  5. Kidd, K. A., Schindler, D. W., Hesslein, R. H. & Muir, D. C. G. Sci. Tot. Environ. (in the press).

  6. Hesslein, R. H., Capel, M. J., Fox, D. E. & Hallard, K. A. Can. J. Fish. aquat. Sci. 48, 2258–2265 (1991).

    Article  Google Scholar 

  7. Hobson, K. A. & Welch, H. E. Mar. Ecol. Progr. Ser. 84, 9–10 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Kling, G. W., Fry, B. & O'Brien, W. J. Ecology 73, 561–566 (1992).

    Article  Google Scholar 

  9. Toda, H. & Wada, E. Hydrobiology 194, 85–90 (1990).

    Article  Google Scholar 

  10. Estep, M. L. F. & Vigg, S. Can. J. Fish. aquat. Sci. 42, 1712–1719 (1985).

    Article  CAS  Google Scholar 

  11. Kline, T. C. Jr, Goering, J. J., Mathisen, O. A., Poe, P. H. & Parker, P. L. Can. J. Fish. aquat. Sci. 47, 136–144 (1990).

    Article  CAS  Google Scholar 

  12. Dadswell, M. J. Distribution, Ecology, and Postglacial Dispersal in Certain Crustaceans and Fishes in Eastern North America (National Museum of Canada, Ottawa, 1975).

    Google Scholar 

  13. Lasenby, D. C., Northcote, T. G. & Furst, M. Can. J. Fish. aquat. Sci. 43, 1277–1284 (1986).

    Article  Google Scholar 

  14. Martinez, P. J. & Bergersen, E. P. N. Am. J. Fish. Manage 9, 1–11 (1989).

    Article  Google Scholar 

  15. Evans, D. O. & Loftus, D. H. Can. J. Fish. aquat. Sci. 44 (suppl. 2), 249–266 (1987).

    Article  Google Scholar 

  16. Martin, N. V. J. Fish. Res. Board Can. 11, 5–10 (1954).

    Article  Google Scholar 

  17. Trippel, E. A. & Beamish, W. H. Can. J. Fish. aquat. Sci. 50, 1442–1455 (1993).

    Article  Google Scholar 

  18. Rasmussen, J. B., Rowan, D. J., Lean, D. R. S. & Carey, J. H. Can. J. Fish. aquat. Sci. 47, 2030–2038 (1990).

    Article  Google Scholar 

  19. Cabana, G., Tremblay, A., Kalff, J. & Rasmussen, J. B. Can J. Fish. aquat. Sci. 51, 381–389 (1994).

    Article  CAS  Google Scholar 

  20. Thomann, R. W. Can. J. Fish. aguat. Sci. 38, 280–296 (1981).

    Article  CAS  Google Scholar 

  21. Hairston, N. G. Jr & Hairston, N. G. Am. Nat. 142, 379–411 (1993).

    Article  Google Scholar 

  22. Spiller, D. A. & Schoener, T. W. Nature 347, 469–471 (1990).

    Article  ADS  Google Scholar 

  23. Power, M. E. Ecology 73, 733–746 (1992).

    Article  Google Scholar 

  24. Diehl, S. Oikos 68, 151–157 (1993).

    Article  Google Scholar 

  25. Pimm, S. L. Food Webs (Chapman and Hall, London, 1987).

    MATH  Google Scholar 

  26. Pimm, S. L. & Lawton, J. H. Nature 275, 542–544 (1978).

    Article  ADS  Google Scholar 

  27. Pimm, S. L. & Lawton, J. H. Nature 268, 329–331 (1977).

    Article  ADS  Google Scholar 

  28. Konkle, B. R. & Sprules, W. G. Trans. Am. Fish. Soc. 115, 515–521 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabana, G., Rasmussen, J. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372, 255–257 (1994). https://doi.org/10.1038/372255a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/372255a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing