Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Altered microtubule organization in small-calibre axons of mice lacking tau protein

Abstract

THE tau gene encodes a protein (Tau) that is a major neuronal microtubule-associated protein localized mostly in axons1–4. It has microtubule-binding and tubulin-polymerizing activity in vitro3,4 and is thought to make short crossbridges between axonal microtubules5,6. Further, tau-transfected non-neuronal cells extend long axon-like processes in which microtubule bundles resembling those in axons are formed6–8. In contrast, tau antisense oligo-nucleotides selectively suppress axonal elongation in cultured neurons9,10. Thus tau is thought to be essential for neuronal cell morphogenesis, especially axonal elongation and maintenance. To test this hypothesis, we used gene targeting to produce mice lacking the tau gene. We show that the nervous system of fan-deficient mice appears to be normal immunohistologically. Furthermore, axonal elongation is not affected in cultured neurons. But in some small-calibre axons, microtubule stability is decreased and microtubule organization is significantly changed. We observed an increase in microtubule-associated protein 1A which may compens-ate for the functions of tau in large-calibre axons. Our results argue against the suggested role of tau in axonal elongation but confirm that it is crucial in the stabilization and organization of axonal microtubules in a certain type of axon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Olmsted, J. B. A. Rev. Cell Biol. 2, 421–457 (1986).

    Article  CAS  Google Scholar 

  2. Matus, A. A. Rev. Neurosci. 11, 20–44 (1988).

    Article  Google Scholar 

  3. Cleveland, D. W., Hwo, S. Y. & Kirschner, M. W. J. molec. Biol. 116, 207–225 (1977).

    Article  CAS  Google Scholar 

  4. Binder, L. I., Frankfurter A. & Rebhun, L. I. J. Cell Biol. 101, 1371–1378 (1985).

    Article  CAS  Google Scholar 

  5. Hirokawa, N., Shiomura, Y. & Okabe, S. J. Cell Biol. 107, 1449–1461 (1988).

    Article  CAS  Google Scholar 

  6. Chen, J., Kanai, Y., Cowan, N. J. & Hirokawa, N. Nature 360, 674–677 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Kanai, Y. et al. J. Cell Biol. 109, 1173–1184 (1989).

    Article  CAS  Google Scholar 

  8. Knops, J. et al. J. Cell Biol. 114, 725–733 (1991).

    Article  CAS  Google Scholar 

  9. Caceres, A. & Kosik, K. S. Nature 343, 461–463 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Caceres, A., Potrebic, S. & Kosik, K. S. J. Neurosci. 11, 1515–1523 (1991).

    Article  CAS  Google Scholar 

  11. Thomas, K. R. & Capecchi, M. R. Cell 51, 503–512 (1987).

    Article  CAS  Google Scholar 

  12. Georgieff, I. S., Liem, R. K. H., Mellado, W., Nunez, J. & Shelanski, M. L. J. Cell Sci. 100, 55–60 (1991).

    CAS  PubMed  Google Scholar 

  13. Hirokawa, N. J. Cell Biol. 94, 129–142 (1982).

    Article  CAS  Google Scholar 

  14. Dotti, C. G., Sullivan, C. A. & Banker, G. A. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  15. Goslin, K. & Banker, G. in Culturing Nerve Cells (eds Banker, G. & Goslin, K.) 251–282 (MIT Press, Cambridge, MA, 1991).

    Google Scholar 

  16. Mitchison, T. J. J. Cell Biol 109, 637–652 (1989).

    Article  CAS  Google Scholar 

  17. Okabe, S. & Hirokawa, N. J. Cell Biol. 117, 105–120 (1992).

    Article  CAS  Google Scholar 

  18. Umeyama, T., Okabe, S., Kanai, Y. & Hirokawa, N. J. Cell Biol. 120, 451–465 (1993).

    Article  CAS  Google Scholar 

  19. Sato-Yoshitake, R., Shiomura, Y., Miyasaka, H. & Hirokawa, N. Neuron 3, 229–238 (1989).

    Article  CAS  Google Scholar 

  20. Shiomura, Y. & Hirokawa, N. J. Neurosci. 7, 1461–1469 (1987).

    Article  CAS  Google Scholar 

  21. Bloom, G. S., Schoenfeld, T. A. & Vallee, R. B. J. Cell Biol. 98, 320–330 (1985).

    Article  Google Scholar 

  22. Lee, K. et al. Cell 69, 737–749 (1992).

    Article  CAS  Google Scholar 

  23. Himmler, A. Molec. cell. Biol. 9, 1389–1396 (1989).

    Article  CAS  Google Scholar 

  24. Lee, G. Cell Motil. Cytoskel. 15, 199–203 (1990).

    Article  CAS  Google Scholar 

  25. McBurney, M. W. et al. Nucleic Acids Res. 19, 5755–5761 (1991).

    Article  CAS  Google Scholar 

  26. Li, E., Bestor, T. H. & Jaenisch, R., Cell 69, 915–926 (1992).

    Article  CAS  Google Scholar 

  27. Bradley, A. in Teratomas and Embryonic Stem Cells: A Practical Approach (ed Robertson, E. J.) 113–152 (IRL, Oxford, 1987).

    Google Scholar 

  28. Harada, A., Sobue, K. & Hirokawa, N. Cell Struct. Funct. 15, 329–342 (1990).

    Article  CAS  Google Scholar 

  29. Ihara, Y. et al. Gerontology 36, 15–24 (1990).

    Article  Google Scholar 

  30. Hondo, J. et al. Neuron 1, 827–834 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, A., Oguchi, K., Okabe, S. et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369, 488–491 (1994). https://doi.org/10.1038/369488a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/369488a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing