Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2

An Erratum to this article was published on 09 August 2001

Abstract

It has generally been believed that, within the context of the Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity, the conduction electrons in a metal cannot be both ferromagnetically ordered and superconducting1,2. Even when the superconductivity has been interpreted as arising from magnetic mediation of the paired electrons, it was thought that the superconducting state occurs in the paramagnetic phase3,4. Here we report the observation of superconductivity in the ferromagnetically ordered phase of the d-electron compound ZrZn2. The specific heat anomaly associated with the superconducting transition in this material appears to be absent, and the superconducting state is very sensitive to defects, occurring only in very pure samples. Under hydrostatic pressure superconductivity and ferromagnetism disappear at the same pressure, so the ferromagnetic state appears to be a prerequisite for superconductivity. When combined with the recent observation of superconductivity in UGe2 (ref. 4), our results suggest that metallic ferromagnets may universally become superconducting when the magnetization is small.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magnetization curves and crystal structure of ZrZn2.
Figure 2: Evidence of superconductivity in high-purity single crystals of weakly ferromagnetic ZrZn2.
Figure 3: Superconducting phase diagram of ZrZn2.
Figure 4: Pressure dependence of the ferromagnetic ordering temperature TFM and superconducting ordering temperature TSC.

Similar content being viewed by others

References

  1. Ginzburg, V. L. Ferromagnetic superconductors. Sov. Phys. JETP 4, 153–161 (1957).

    CAS  MATH  Google Scholar 

  2. Berk, N. F. & Schrieffer, J. R. Effect of ferromagnetic spin correlations on superconductivity. Phys. Rev. Lett. 17, 433–436 (1966).

    Article  ADS  CAS  Google Scholar 

  3. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Saxena, S. S. et al. Superconductivity on the border of itinerant–electron ferromagnetism in UGe2. Nature 406, 587–592 (2000).

    Article  ADS  CAS  Google Scholar 

  5. Matthias, B. T. & Bozorth, R. M. Ferromagnetism of a zirconium–zinc compound. Phys. Rev. 109, 604 (1958).

    Article  ADS  CAS  Google Scholar 

  6. Jarlborg, T., Freeman, A. J. & Koelling, D. D. Self-consistent spin-polarized energy band structure and magnetism in ZrZn2 and TiBe2. J. Magn. Magn. Mater. 23, 291–292 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Bernhoeft, N. R., Law, S. A., Lonzarich, G. G. & Paul, D. McK. Magnetic excitations in ZrZn2 at low energies and long wavelengths. Phys. Scr. 38, 191–193 (1988).

    Article  ADS  CAS  Google Scholar 

  8. van Deursen, A. P. J. et al. A Fermi surface study of ZrZn2. J. Magn. Magn. Mater. 54, 1113–1114 (1986).

    Article  ADS  Google Scholar 

  9. Enz, C. P. & Matthias, B. T. p-state pairing and the ferromagnetism of ZrZn2. Science 201, 828–829 (1978).

    Article  ADS  CAS  Google Scholar 

  10. Fay, D. & Appel, J. Coexistence of p-state superconductivity and itinerant ferromagnetism. Phys. Rev. B 22, 3173–3182 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Blagoev, K. B., Engelbrecht, J. R. & Bedell, K. S. Effect of ferromagnetic spin correlations on superconductivity in ferromagnetic metals. Phys. Rev. Lett. 82, 133–136 (1998).

    Article  ADS  Google Scholar 

  12. Smith, T. F., Mydosh, J. A. & Wohlfarth, E. P. Destruction of ferromagnetism in ZrZn2 at high pressure. Phys. Rev. Lett. 27, 1732–1735 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Mackenzie, A. P. et al. Extremely strong dependence of superconductivity on disorder in Sr2RuO4. Phys. Rev. Lett. 80, 161–164 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Karchev, N. I., Blagoev, K. B., Bedell, K. S. & Littlewood, P. B. Coexistence of superconductivity and ferromagnetism in ferromagnetic metals. Phys. Rev. Lett. 86, 846–849 (2001).

    Article  ADS  CAS  Google Scholar 

  15. Sanchez, D., Junod, A., Muller, J., Berger, H. & Levy, F. Specific heat of 2H-NbSe2 in high magnetic fields. Physica B 204, 167–175 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Loram, J. W., Mirza, K. A., Cooper, J. R., Liang, W. Y. & Wade, J. M. Electronic specific heat of Yba2Cu3O6+x from 1.8 to 300 K. J. Supercond. 7, 243–249 (1994).

    Article  ADS  CAS  Google Scholar 

  17. Fulde, P. & Ferrell, R. A. Superconductivity in a strong exchange field. Phys. Rev. A 135, 550–563 (1964).

    Article  ADS  Google Scholar 

  18. Larkin, A. I. & Ovchinnikov, Y. N. Inhomogenous state of superconductors. Sov. Phys. JETP 20, 762–769 (1975).

    Google Scholar 

  19. Huang, S. Z., Wu, M. K., Meng, R. L. & Chu, C. W. Hydrogen effect on the itinerant ferromagnets TiBe2x and ZrZn1.9. Solid State Commun. 38, 1151–1153 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Sonin, E. B. & Felner, I. Spontaneous vortex phase in a superconducting weak ferromagnet. Phys. Rev. B 57, R14000–R14003 (1998).

    Article  ADS  CAS  Google Scholar 

  21. Fischer, O. & Maple, M. B. (eds) Superconductivity in Ternary Compounds (Springer, Berlin, 1982).

    Book  Google Scholar 

  22. Felner, I., Asaf, U., Levi, Y. & Millo, O. Coexistence of magnetism and superconductivity in R1,4Ce0.6Ru2Sr2O10-δ(R=Eu and Gd). Phys. Rev. B 55, R3374–R3377 (1997).

    Article  ADS  CAS  Google Scholar 

  23. Schreurs, L. W. M. et al. Growth and electrical properties of ZrZn2 single crystals. Mater. Res. Bull. 24, 1141–1145 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Griffiths for resistivity measurements, P. Pfundstein and V. Ziebat for the microprobe analysis, H. Stalzer for SQUID magnetization measurements below 1 K, and A. D. Huxley, M. B. Maple and G. Müller-Vogt for discussions. Financial support by the Deutsche Forschungsgemeinschaft (DFG), the European Science Foundation (ESF) under the FERLIN programme, and the UK Engineering and Physical Sciences Research Council (UK-EPSRC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfleiderer, C., Uhlarz, M., Hayden, S. et al. Coexistence of superconductivity and ferromagnetism in the d-band metal ZrZn2. Nature 412, 58–61 (2001). https://doi.org/10.1038/35083531

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35083531

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing