Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actin dynamics at pointed ends regulates thin filament length in striated muscle

Abstract

Regulation of actin dynamics at filament ends determines the organization and turnover of actin cytoskeletal structures. In striated muscle, it is believed that tight capping of the fast-growing (barbed) ends by CapZ and of the slow-growing (pointed) ends by tropomodulin (Tmod) stabilizes the uniform lengths of actin (thin) filaments in myofibrils. Here we demonstrate for the first time that both CapZ and Tmod are dynamic on the basis of the rapid incorporation of microinjected rhodamine-labelled actin (rho-actin) at both barbed and pointed ends and from the photobleaching of green fluorescent protein (GFP)-labelled Tmod. Unexpectedly, the inhibition of actin dynamics at pointed ends by GFP–Tmod overexpression results in shorter thin filaments, whereas the inhibition of actin dynamics at barbed ends by cytochalasin D has no effect on length. These data demonstrate that the actin filaments in myofibrils are relatively dynamic despite the presence of capping proteins, and that regulated actin assembly at pointed ends determines the length of thin filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rho-actin is incorporated at pointed ends and Z-lines in cardiac myocytes.
Figure 2: Cytochalasin D inhibits rho-actin incorporation at the Z-line.
Figure 3: Overexpression of GFP–Tmod prevents rho-actin incorporation at pointed ends and results in shorter thin filaments.
Figure 4: Direct observation of rapid GFP–Tmod exchange at pointed ends by photobleaching.
Figure 5: Model for rho-actin incorporation into thin filament ends in the presence of endogenous (a) and excess (b) levels of Tmod.

Similar content being viewed by others

References

  1. Littlefield, R. & Fowler, V. M. Defining actin filament length in striated muscle: rulers and caps or dynamic stability? Annu. Rev. Cell Dev. Biol. 14, 487–525 (1998).

    Article  CAS  Google Scholar 

  2. Cooper, J. A. The role of actin polymerization in cell motility. Annu. Rev. Physiol. 53, 585–605 (1991).

    Article  CAS  Google Scholar 

  3. Schafer, D. A. & Cooper, J. A. Control of actin assembly at filament ends. Annu. Rev. Cell Dev. Biol. 11, 497–518 (1995).

    Article  CAS  Google Scholar 

  4. Carlier, M. F. & Pantaloni, D. Control of actin dynamics in cell motility. J Mol. Biol. 269, 459–467 (1997).

    Article  CAS  Google Scholar 

  5. Wang, Y. L. Exchange of actin subunits at the leading edge of living fibroblasts: possible role of treadmilling. J. Cell Biol. 101, 597–602 (1985).

    Article  CAS  Google Scholar 

  6. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  Google Scholar 

  7. Wanger, M., Keiser, T., Neuhaus, J. M. & Wegner, A. The actin treadmill. Can. J. Biochem. Cell Biol. 63, 414–421 (1985).

    Article  CAS  Google Scholar 

  8. Pollard, T. D. Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J. Cell Biol. 103, 2747–2754 (1986).

    Article  CAS  Google Scholar 

  9. Theriot, J. A. & Mitchison, T. J. Actin microfilament dynamics in locomoting cells. Nature 352, 126–131 (1991).

    Article  CAS  Google Scholar 

  10. Symons, M. H. & Mitchison, T. J. Control of actin polymerization in live and permeabilized fibroblasts. J. Cell Biol. 114, 503–513 (1991).

    Article  CAS  Google Scholar 

  11. Amato, P. A. & Taylor, D. L. Probing the mechanism of incorporation of fluorescently labeled actin into stress fibers. J. Cell Biol. 102, 1074–1084 (1986).

    Article  CAS  Google Scholar 

  12. Turnacioglu, K. K., Sanger, J. W. & Sanger, J. M. Sites of monomeric actin incorporation in living PtK2 and REF-52 cells. Cell Motil. Cytoskel. 40, 59–70 (1998).

    Article  CAS  Google Scholar 

  13. Schafer, D. A. et al. Visualization and molecular analysis of actin assembly in living cells. J. Cell Biol. 143, 1919–1930 (1998).

    Article  CAS  Google Scholar 

  14. Forscher, P. & Smith, S. J. Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J. Cell Biol. 107, 1505–1516 (1988).

    Article  CAS  Google Scholar 

  15. Casella, J. F., Craig, S. W., Maack, D. J. & Brown, A. E. Cap Z(36/32), a barbed end actin-capping protein, is a component of the Z-line of skeletal muscle. J. Cell Biol. 105, 371–379 (1987).

    Article  CAS  Google Scholar 

  16. Fowler, V. M., Sussmann, M. A., Miller, P. G., Flucher, B. E. & Daniels, M. P. Tropomodulin is associated with the free (pointed) ends of the thin filaments in rat skeletal muscle. J. Cell Biol. 120, 411–420 (1993).

    Article  CAS  Google Scholar 

  17. Weber, A., Pennise, C. R., Babcock, G. G. & Fowler, V. M. Tropomodulin caps the pointed ends of actin filaments. J. Cell Biol. 127, 1627–1635 (1994).

    Article  CAS  Google Scholar 

  18. Schafer, D. A., Hug, C. & Cooper, J. A. Inhibition of CapZ during myofibrillogenesis alters assembly of actin filaments. J. Cell Biol. 128, 61–70 (1995).

    Article  CAS  Google Scholar 

  19. Hart, M. C. & Cooper, J. A. Vertebrate isoforms of actin capping protein beta have distinct functions In vivo. J. Cell Biol. 147, 1287–1298 (1999).

    Article  CAS  Google Scholar 

  20. Sussman, M. A. et al. Altered expression of tropomodulin in cardiomyocytes disrupts the sarcomeric structure of myofibrils. Circ. Res. 82, 94–105 (1998).

    Article  CAS  Google Scholar 

  21. Gregorio, C. C., Weber, A., Bondad, M., Pennise, C. R. & Fowler, V. M. Requirement of pointed-end capping by tropomodulin to maintain actin filament length in embryonic chick cardiac myocytes. Nature 377, 83–86 (1995).

    Article  CAS  Google Scholar 

  22. Sussman, M. A. et al. Myofibril degeneration caused by tropomodulin overexpression leads to dilated cardiomyopathy in juvenile mice. J Clin. Invest. 101, 51–61 (1998).

    Article  CAS  Google Scholar 

  23. Schafer, D. A., Jennings, P. B. & Cooper, J. A. Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135, 169–179 (1996).

    Article  CAS  Google Scholar 

  24. Weber, A., Pennise, C. R. & Fowler, V. M. Tropomodulin increases the critical concentration of barbed end-capped actin filaments by converting ADPPi-actin to ADP-actin at all pointed filament ends. J. Biol. Chem. 274, 34637–34645 (1999).

    Article  CAS  Google Scholar 

  25. Schafer, D. A., Waddle, J. A. & Cooper, J. A. Localization of CapZ during myofibrillogenesis in cultured chicken muscle. Cell Motil. Cytoskel. 25, 317–335 (1993).

    Article  CAS  Google Scholar 

  26. Ishiwata, S. & Funatsu, T. Does actin bind to the ends of thin filaments in skeletal muscle? J. Cell Biol. 100, 282–291 (1985).

    Article  CAS  Google Scholar 

  27. Sanger, J. W., Mittal, B. & Sanger, J. M. Analysis of myofibrillar structure and assembly using fluorescently labeled contractile proteins. J. Cell Biol. 98, 825–833 (1984).

    Article  CAS  Google Scholar 

  28. Imanaka-Yoshida, K., Sanger, J. M. & Sanger, J. W. Contractile protein dynamics of myofibrils in paired adult rat cardiomyocytes. Cell Motil. Cytoskel. 26, 301–312 (1993).

    Article  CAS  Google Scholar 

  29. Nwe, T. M., Maruyama, K. & Shimada, Y. Relation of nebulin and connectin (titin) to dynamics of actin in nascent myofibrils of cultured skeletal muscle cells. Exp. Cell Res. 252, 33–40 (1999).

    Article  CAS  Google Scholar 

  30. McKenna, N., Meigs, J. B. & Wang, Y. L. Identical distribution of fluorescently labeled brain and muscle actins in living cardiac fibroblasts and myocytes. J. Cell Biol. 100, 292–296 (1985).

    Article  CAS  Google Scholar 

  31. Dome, J. S., Mittal, B., Pochapin, M. B., Sanger, J. M. & Sanger, J. W. Incorporation of fluorescently labeled actin and tropomyosin into muscle cells. Cell Differ. 23, 37–52 (1988).

    Article  CAS  Google Scholar 

  32. Yamaguchi, M., Izumimoto, M., Robson, R. M. & Stromer, M. H. Fine structure of wide and narrow vertebrate muscle Z-lines. A proposed model and computer simulation of Z-line architecture. J. Mol. Biol. 184, 621–643 (1985).

    Article  CAS  Google Scholar 

  33. Sampath, P. & Pollard, T. D. Effects of cytochalasin, phalloidin, and pH on the elongation of actin filaments. Biochemistry 30, 1973–1980 (1991).

    Article  CAS  Google Scholar 

  34. Tilney, L. G. & DeRosier, D. J. Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Dev. Biol. 116, 119–129. (1986).

    Article  CAS  Google Scholar 

  35. Michele, D. E., Albayya, F. P. & Metzger, J. M. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J. Cell Biol. 145, 1483–1495 (1999).

    Article  CAS  Google Scholar 

  36. Hug, C. et al. Capping protein levels influence actin assembly and cell motility in Dictyostelium. Cell 81, 591–600 (1995).

    Article  CAS  Google Scholar 

  37. Mallavarapu, A. & Mitchison, T. Regulated actin cytoskeleton assembly at filopodium tips controls their extension and retraction. J. Cell Biol. 146, 1097–1106 (1999).

    Article  CAS  Google Scholar 

  38. Theriot, J. A. & Mitchison, T. J. Comparison of actin and cell surface dynamics in motile fibroblasts. J. Cell Biol. 119, 367–377 (1992).

    Article  CAS  Google Scholar 

  39. Theriot, J. A., Mitchison, T. J., Tilney, L. G. & Portnoy, D. A. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357, 257–260 (1992).

    Article  CAS  Google Scholar 

  40. Suzuki, H., Komiyama, M., Konno, A. & Shimada, Y. Exchangeability of actin in cardiac myocytes and fibroblasts as determined by fluorescence photobleaching recovery. Tissue Cell 30, 274–280 (1998).

    Article  CAS  Google Scholar 

  41. Almenar-Queralt, A., Gregorio, C. C. & Fowler, V. M. Tropomodulin assembles early in myofibrillogenesis in chick skeletal muscle: evidence that thin filaments rearrange to form striated myofibrils. J. Cell Sci. 112, 1111–1123 (1999).

    CAS  PubMed  Google Scholar 

  42. Gregorio, C. C. & Fowler, V. M. Tropomodulin function and thin filament assembly in cardiac myocytes. Trends Cardiovasc. Med. 6, 136–141 (1996).

    Article  CAS  Google Scholar 

  43. Draeger, A., Amos, W. B., Ikebe, M. & Small, J. V. The cytoskeletal and contractile apparatus of smooth muscle: contraction bands and segmentation of the contractile elements. J. Cell Biol. 111, 2463–2473 (1990).

    Article  CAS  Google Scholar 

  44. Cramer, L. P., Siebert, M. & Mitchison, T. J. Identification of novel graded polarity actin filament bundles in locomoting heart fibroblasts: implications for the generation of motile force. J. Cell Biol. 136, 1287–1305 (1997).

    Article  CAS  Google Scholar 

  45. Conley, C. A., Fritz-Six, K. A., Almernar-Queralt, A. & Fowler, V. M. Leiomodins: larger members of the tropomodulin (tmod) gene family. Genomics 73, 127–139 (2001).

    Article  CAS  Google Scholar 

  46. Cox, P. R. & Zoghbi, H. Y. Sequencing, expression analysis, and mapping of three unique human tropomodulin genes and their mouse orthologs. Genomics 63, 97–107 (2000).

    Article  CAS  Google Scholar 

  47. Tait, J. F. & Frieden, C. Polymerization-induced changes in the fluorescence of actin labeled with iodoacetamidotetramethylrhodamine. Arch. Biochem. Biophys. 216, 133–141 (1982).

    Article  CAS  Google Scholar 

  48. Gregorio, C. C. & Fowler, V. M. Mechanisms of thin filament assembly in embryonic chick cardiac myocytes: tropomodulin requires tropomyosin for assembly. J. Cell Biol. 129, 683–695 (1995).

    Article  CAS  Google Scholar 

  49. Babcock, G. G. & Fowler, V. M. Isoform-specific interaction of tropomodulin with skeletal muscle and erythrocyte tropomyosins. J. Biol. Chem. 269, 27510–27518 (1994).

    CAS  PubMed  Google Scholar 

  50. Almenar-Queralt, A., Lee, A., Conley, C. A., Ribas de Pouplana, L. & Fowler, V. M. Identification of a novel tropomodulin isoform, skeletal tropomodulin, that caps actin filament pointed ends in fast skeletal muscle. J. Biol. Chem. 274, 28466–28475 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Hahn for use of his microscope and for advice, K. Sullivan for his instruction in live-cell imaging, K. Monier for advice on photobleaching, C. Waterman-Storer for editorial comments, and C. Subauste and J. Montebella for help in preparing the rhodamine-actin. We also thank past and present members of the Fowler laboratory for suggestions and help. R.L. was the recipient of a research fellowship from the American Heart Association, Western States Affiliate. This work was supported by grants to V.M.F. from the N.I.H. (GM 34225) and from the Human Frontiers in Science Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Velia M. Fowler.

Supplementary information

Supplementary figures

Figure S1 Overview of distributed deconvolution method. (PDF 96 kb)

Figure S2 Rho-actin and phallacidin distribution functions (a, c) and profiles (b, d).

Figure S3 Comparison of 3-peak and 1-peak rho-actin profiles reveals that incorporation sites are uniformly organized within myofibrils.

Figure S4 Rho-actin distribution parameters determined by distributed deconvolution are uniform within cells but exhibit variation between cells. for all 20 images.

Supplementary movie

Movie 1 A living, beating cardiac myocyte imaged 1 h after microinjection with rho-actin. There are 20 frames, each ~1 s apart. Myofibrils do not seem to contract smoothly when imaged at this frame rate, and only occasional snapshots of myofibril stretching and contraction are visible. The myofibril shown in Fig. 1b is in the bottom half of this movie. (MOV 659 kb)

Supplementary movie

Movie 2 A different region from the same cell as in movie 1. There are several myofibrils that show instances of myofibril stretching and contraction. (MOV 1513 kb)

Introduction to distributed deconvolution and application to analysis of rho-actin incorporation patterns. (PDF 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Littlefield, R., Almenar-Queralt, A. & Fowler, V. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Nat Cell Biol 3, 544–551 (2001). https://doi.org/10.1038/35078517

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35078517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing