Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-directed growth of molecular nanostructures on silicon

Abstract

Advances in techniques for the nanoscale manipulation of matter are important for the realization of molecule-based miniature devices1,2,3,4,5,6,7,8 with new or advanced functions. A particularly promising approach involves the construction of hybrid organic-molecule/silicon devices9,10,11,12,13,14. But challenges remain—both in the formation of nanostructures that will constitute the active parts of future devices, and in the construction of commensurately small connecting wires. Atom-by-atom crafting of structures with scanning tunnelling microscopes15,16,17, although essential to fundamental advances, is too slow for any practical fabrication process; self-assembly approaches may permit rapid fabrication18, but lack the ability to control growth location and shape. Furthermore, molecular diffusion on silicon is greatly inhibited19, thereby presenting a problem for self-assembly techniques. Here we report an approach for fabricating nanoscale organic structures on silicon surfaces, employing minimal intervention by the tip of a scanning tunnelling microscope and a spontaneous self-directed chemical growth process. We demonstrate growth of straight molecular styrene lines—each composed of many organic molecules—and the crystalline silicon substrate determines both the orientation of the lines and the molecular spacing within these lines. This process should, in principle, allow parallel fabrication of identical complex functional structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed chain reaction mechanism for self-directed growth of molecular nanostructures on silicon.
Figure 2: Growth of styrene lines on a H-terminated Si(100) surface with a dilute concentration of single Si dangling bonds.
Figure 3: Structure of styrene lines.

Similar content being viewed by others

References

  1. Aviram, A. & Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  ADS  CAS  Google Scholar 

  2. Tian, W. et al. Conductance spectra of molecular wires. J. Chem. Phys. 109, 2874–2882 ( 1998).

    Article  ADS  CAS  Google Scholar 

  3. Reed, M. A., Zhou, C., Muller, C. J., Burgin, T. P. & Tour, J. M. Conductance of a molecular junction. Science 278, 252–254 ( 1997).

    Article  CAS  Google Scholar 

  4. Collier, C. P. et al. Electronically configurable molecular-based logic gates. Science 285, 391–394 ( 1999).

    Article  CAS  Google Scholar 

  5. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49– 52 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Davis, W. B., Svec, W. A., Ratner, M. A. & Wasielewski, M. R. Molecular wire behavior in p-phenylenevinylene oligomers. Nature 396, 60–63 ( 1998).

    Article  ADS  CAS  Google Scholar 

  7. Ness, H. & Fisher, A. J. Quantum inelastic conductance through molecular wires. Phys. Rev. Lett. 83, 452–455 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Joachim, C. & Gimzewski, J. K. An electromechanical amplifier using a single molecule. Chem Phys. Lett. 265, 353–355 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Wolkow, R. A. Controlled molecular adsorption on Si: laying a foundation for molecular devices. Annu. Rev. Phys. Chem. 50, 413– 441 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Hamers, R. J., Hovis, J. S., Lee, S., Liu, H. & Shan, J. Formation of ordered, anisotropic organic monolayers on the Si surface. J. Phys. Chem. 101, 1489–1492 (1997).

    Article  CAS  Google Scholar 

  11. Wolkow, R. A., Lopinski, G. P. & Moffatt, D. J. Resolving organic molecule-silicon scanning tunneling microscopy features with molecular orbital methods. Surf. Sci. 416, L1107–L1113 ( 1998).

    Article  ADS  CAS  Google Scholar 

  12. Lopinski, G. P., Moffatt, D. J., Wayner, D. D. M. & Wolkow, R. A. Determination of the absolute chirality of individual adsorbed molecules using the scanning tunnelling microscope. Nature 392, 909–911 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Linford, M. R., Fenter, P., Eisenberger P. M. & Chidsey, C. E. D. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J. Am. Chem. Soc. 117, 3145–3155 ( 1995).

  14. Cohen, R., Zenou, N., Cahen, D. & Yitzchaik, S. Molecular electronic tuning of Si surfaces. Chem Phys. Lett. 279, 270–274 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Avouris, Ph. et al. Atom-scale desorption through electronic and vibrational excitation mechanisms. Surf. Sci. 363, 368– 377 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Shen, T. C., Wang, C. & Tucker, J. R. Al nucleation on monohydride and bare Si(001) surfaces: atomic scale patterning. Phys. Rev. Lett. 78, 1271–1274 (1997).

  18. Nogami, J. in Atomic and Molecular Wires (eds Joachim, C. & Roth, S.) 11 –21 (Kluwer, Dordrecht, 1997).

    Book  Google Scholar 

  19. Wolkow, R. A. & Moffatt, D. J. The frustrated motion of benzene on the surface of Si(111). J. Chem. Phys. 103, 10696–10700 (1995).

  20. Bozack, M. J., Taylor, P. A., Choyke, W. J. & Yates, J. T. Chemical activity of the C = C double bond. Surf. Sci. 177, 933–937 (1986).

    Article  ADS  Google Scholar 

  21. Yoshinobu, J., Tsuda, H., Onchi, M. & Nishijima, M. The adsorbed states of ethylene on Si(100)c(4x2), Si(100)(2x1), and vicinal Si(100)9o: Electron energy loss spectroscopy and low energy electron diffraction studies. J. Chem. Phys. 87, 7332– 7340 (1987).

  22. Mayne, A. J. et al. An STM study of the chemisorption of C2H4 on Si(001)(2x1). Surf. Sci. 284, 247–256 (1993).

    Article  ADS  CAS  Google Scholar 

  23. Pan, W., Zhu, T. & Yang, W. First-principles study of the structure and electronic properties of ethylene adsorption on Si(100)-2x1 surface. J. Chem. Phys. 107 , 3981–3985 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Fisher, A. J., Blochl, P. E. & Briggs, G. A. D. Hydrocarbon adsorption on Si(001): When does the silicon dimer bond break? Surf. Sci. 374, 298–305 (1997).

  25. Cicero, R. L., Linford, M. R. & Chidsey, C. E. D. Photoreactivity of unsaturated compounds with hydrogen terminated silicon (111). Langmuir (in the press).

  26. Boland, J. J. Role of bond strain in chemistry of hydrogen on the Si(100) surface. Surf. Sci. 261, 17–28 (1992).

  27. Mo, W., Kleiner, J., Webb, M. B. & Lagally, M. G. Activation energy for surface diffusion of Si on Si(100): A scanning tunneling microscopy study. Phys. Rev. Lett. 66, 1998– 2001 (1991).

    Article  ADS  CAS  Google Scholar 

  28. O'Driscoll, K. F. & Mahabadi, H. K. Spatially intermittent polymerization. J. Polymer Sci. Chem. 14, 869–881 (1976).

    Article  CAS  Google Scholar 

  29. Hitosugi, T. et al. Jahn-Teller distortion in dangling-bond linear chains fabricated on a hydrogen-terminated Si(100)-2 × 1 surface. Phys. Rev. Lett. 82, 4034–4037 ( 1999).

    Article  ADS  CAS  Google Scholar 

  30. Hata, K., Kimura, T., Ozawa, S. & Shigekawa, K. How to fabricate a defect free Si(100) surface. J. Vac. Sci. Technol. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Wolkow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopinski, G., Wayner, D. & Wolkow, R. Self-directed growth of molecular nanostructures on silicon. Nature 406, 48–51 (2000). https://doi.org/10.1038/35017519

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017519

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing