Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FAK integrates growth-factor and integrin signals to promote cell migration

Abstract

Here we show that cells lacking focal adhesion kinase (FAK) are refractory to motility signals from platelet-derived and epidermal growth factors (PDGF and EGF respectively), and that stable re-expression of FAK rescues these defects. FAK associates with activated PDGF- and EGF-receptor (PDGFR and EGFR) signalling complexes, and expression of the band-4.1-like domain at the FAK amino terminus is sufficient to mediate an interaction with activated EGFR. However, efficient EGF-stimulated cell migration also requires FAK to be targeted, by its carboxy-terminal domain, to sites of integrin-receptor clustering. Although the kinase activity of FAK is not needed to promote PDGF- or EGF-stimulated cell motility, kinase-inactive FAK is transphosphorylated at the indispensable Src-kinase-binding site, FAK Y397, after EGF stimulation of cells. Our results establish that FAK is an important receptor-proximal link between growth-factor-receptor and integrin signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FAK forms a complex with the activated PDGFR and is required for PDGF-stimulated cell motility.
Figure 2: The FAK SH2-binding site and Src-family protein-tyrosine-kinase activity are necessary for PDGF-stimulated cell migration.
Figure 3: FAK forms a complex with the activated EGFR and is required for EGF-stimulated cell motility.
Figure 4: The FAK N-terminal domain is required for association with EGFR and EGF-stimulated cell motility.
Figure 5: Exogenously expressed FAK N-terminal domain can form a complex with activated EGFR.
Figure 6: Expression of the FAK C-terminal domain inhibits the FAK–EGFR association and EGF-stimulated cell motility.
Figure 7: Model of FAK function.

Similar content being viewed by others

References

  1. Schneller, M., Vuori, K. & Ruoslahti, E. αvβ3 integrin associates with activated insulin and PDGFβ receptors and potentiates the biological activity of PDGF. EMBO J. 16, 5600–5607 (1997).

    Article  CAS  Google Scholar 

  2. Miyamoto, S., Teremoto, H., Gutkind, J. S. & Yamada, K. M. Integrins can collaborate with growth factors for phosphorylation of receptor tyrosine kinases and MAP kinase activation: roles of integrin aggregation and occupancy of receptors. J. Cell Biol. 135, 1633–1642 (1996).

    Article  CAS  Google Scholar 

  3. Howe, A., Aplin, A. E., Alahari, S. K. & Juliano, R. L. Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10, 220–231 (1998).

    Article  CAS  Google Scholar 

  4. Giancotti, F. G. & Ruoslahti, E. Integrin signaling . Science 285, 1028–1032 (1999).

    Article  CAS  Google Scholar 

  5. Schwartz, M. A. & Baron, V. Interactions between mitogenic stimuli, or, a thousand and one connections. Curr. Opin. Cell Biol. 11, 197–202 (1999).

    Article  CAS  Google Scholar 

  6. Hildebrand, J. D., Schaller, M. D. & Parsons, J. T. Identification of sequences required for the efficient localization of the focal adhesion kinase, pp125FAK, to cellular focal adhesions. J. Cell Biol. 123, 993– 1005 (1993).

    Article  CAS  Google Scholar 

  7. Tachibana, K., Sato, T., D’Avirro, N. & Morimoto, C. Direct association of pp125FAK with paxillin, the focal adhesion-targeting mechanism of pp125FAK. J. Exp. Med. 182, 1089–1100 (1995).

    Article  CAS  Google Scholar 

  8. Liu, S. et al. Binding of paxillin to alpha 4 integrins modifies integrin-dependent biological responses. Nature 402, 676– 681 (1999).

    Article  CAS  Google Scholar 

  9. Chen, H. C. et al. Interaction of focal adhesion kinase with cytoskeletal protein talin. J. Biol. Chem. 270, 16995– 16999 (1995).

    Article  CAS  Google Scholar 

  10. Schlaepfer, D. D. & Hunter, T. Evidence for in vivo phosphorylation of the Grb 2 SH 2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol. Cell. Biol. 16, 5623–5633 (1996).

    Article  CAS  Google Scholar 

  11. Schlaepfer, D. D., Hauck, C. R. & Sieg, D. J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435– 478 (1999).

    Article  CAS  Google Scholar 

  12. Tamura, M. et al. Inhibition of cell migration, spreading, and focal adhesions by tumor suppressor PTEN. Science 280, 1614 –1617 (1998).

    Article  CAS  Google Scholar 

  13. Gu, J. et al. Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol. 146, 389 –404 (1999).

    Article  CAS  Google Scholar 

  14. Sieg, D. J. et al. Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration. EMBO J. 17, 5933–5947 (1998).

    Article  CAS  Google Scholar 

  15. Sieg, D. J., Hauck, C. R. & Schlaepfer, D. D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci. 112 , 2677–2691 (1999).

    CAS  PubMed  Google Scholar 

  16. Owen, J. D., Ruest, P. J., Fry, D. W. & Hanks, S. K. Induced focal adhesion kinase (FAK) expression in FAK-null cells enhances cell spreading and migration requiring both auto- and activation loop phosphorylation sites and inhibits adhesion-dependent tyrosine phosphorylation of Pyk 2. Mol. Cell Biol. 19, 4806–4818 (1999).

    Article  CAS  Google Scholar 

  17. Cary, L. A., Han, D. C., Polte, T. R., Hanks, S. K. & Guan, J.-L. Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J. Cell Biol. 140, 211–221 (1998).

    Article  CAS  Google Scholar 

  18. Gilmore, A. P. & Romer, L. H. Inhibition of focal adhesion kinase (FAK) signaling in focal adhesions decreases cell motility and proliferation. Mol. Biol. Cell 7, 1209 –1224 (1996).

    Article  CAS  Google Scholar 

  19. George, E. L., Georges-Labouesse, E. N., Patel-King, R. S., Rayburn, H. & Hynes, R. O. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin . Development 119, 1079– 1091 (1993).

    CAS  PubMed  Google Scholar 

  20. Furuta, Y. et al. Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase, FAK. Oncogene 11 , 1989–1995 (1995).

    CAS  PubMed  Google Scholar 

  21. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  Google Scholar 

  22. Chen, H. C. & Guan, J. L. The association of focal adhesion kinase with a 200-kDa protein that is tyrosine phosphorylated in response to platelet-derived growth factor. Eur. J. Biochem. 235, 495–500 (1996).

    Article  CAS  Google Scholar 

  23. Salazar, E. P. & Rozengurt, E. Bombesin and platelet-derived growth factor induce association of endogenous focal adhesion kinase with Src in intact Swiss 3T3 cells. J. Biol. Chem. 274, 28371–28378 (1999).

    Article  CAS  Google Scholar 

  24. Schlaepfer, D. D., Jones, K. C. & Hunter, T. Multiple Grb2-mediated integrin-stimulated signaling pathways to ERK 2/mitogen-activated protein kinase: Summation of both c-Src and FAK-initiated tyrosine phosphorylation events. Mol. Cell Biol. 18, 2571–2585 (1998).

    Article  CAS  Google Scholar 

  25. Chen, H. C., Appeddu, P. A., Isoda, H. & Guan, J. L. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem 271, 26329–26334 (1996).

    Article  CAS  Google Scholar 

  26. Manes, S. et al. Concerted activity of tyrosine phosphatase SHP-2 and focal adhesion kinase in regulation of cell motility. Mol. Cell Biol. 19, 3125–3135 (1999).

    Article  CAS  Google Scholar 

  27. Zhang, X. et al. Focal adhesion kinase promotes phospholipase C-gamma 1 activity . Proc. Natl Acad. Sci. USA 96, 9021– 9026 (1999).

    Article  CAS  Google Scholar 

  28. Han, D. C. & Guan, J. L. Association of focal adhesion kinase with grb7 and its role in cell migration. J. Biol. Chem. 274, 24425–24430 (1999).

    Article  CAS  Google Scholar 

  29. Schaller, M. D., Otey, C. A., Hildebrand, J. D. & Parsons, J. T. Focal adhesion kinase and paxillin bind peptides mimicking β integrin cytoplasmic domains. J. Cell Biol. 130, 1181–1187 (1995).

    Article  CAS  Google Scholar 

  30. Girault, J. A., Labesse, G., Mornon, J. P. & Callebaut, I. The N-termini of FAK and JAKs contain divergent band 4.1 domains. Trends Biochem. Sci. 24, 54–57 (1999).

    Article  CAS  Google Scholar 

  31. Lev, S. et al. Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein. Mol. Cell. Biol. 19, 2278–2288 (1999).

    Article  CAS  Google Scholar 

  32. Richardson, A. & Parsons, J. T. A mechanism for regulation of the adhesion-associated protein tyrosine kinase pp125FAK. Nature 380, 538– 540 (1996).

    Article  CAS  Google Scholar 

  33. Cicala, C. et al. Induction of phosphorylation and intracellular association of CC chemokine receptor 5 and focal adhesion kinase in primary human CD4+ T cells by macrophage-tropic HIV envelope. J. Immunol. 163, 420–426 (1999).

    CAS  PubMed  Google Scholar 

  34. Miao, H., Burnett, E., Kinch, M., Simon, E. & Wang, B. Activation of EphA2 kinase suppresses integrin function and causes focal adhesion kinase dephosphorylation. Nature Cell Biol. 2, 62–69 (2000).

    Article  CAS  Google Scholar 

  35. Fincham, V. J. & Frame, M. C. The catalytic activity of Src is dispensable for translocation to focal adhesions but controls the turnover of these structures during cell motility. EMBO J. 17, 81–92 (1998).

    Article  CAS  Google Scholar 

  36. Brunton, V. G., Ozanne, B. W., Paraskeva, C. & Frame, M. C. A role for epidermal growth factor receptor, c-Src and focal adhesion kinase in an in vitro model for the progression of colon cancer. Oncogene 14, 283–293 (1997).

    Article  CAS  Google Scholar 

  37. Owens, L. V. et al. Overexpression of the focal adhesion kinase (p125FAK) in invasive human tumors. Cancer Res. 55, 2752– 2755 (1995).

    CAS  PubMed  Google Scholar 

  38. Kornberg, L. J. Focal adhesion kinase and its potential involvement in tumor invasion and metastasis. Head Neck 20, 745– 752 (1998).

    Article  CAS  Google Scholar 

  39. Agochiya, M. et al. Increased dosage and amplification of the focal adhesion kinase gene in human cancer cells. Oncogene 18, 5646–5653 (1999).

    Article  CAS  Google Scholar 

  40. Schlaepfer, D. D., Broome, M. A. & Hunter, T. Fibronectin-stimulated signaling from a focal adhesion kinase- c-Src complex: involvement of the Grb 2, p130Cas, and Nck adaptor proteins. Mol. Cell Biol. 17, 1702–1713 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Moore and S. Reider for assistance, M. Schwartz for polyclonal antiserum directed to β1 integrins, T. Hunter for the PDGFR-β-expression vector and polyclonal antibodies to the PDGFRβ, B. Mayer for the pEBG mammalian GST-fusion expression vector and J.-L. Guan for the HA-tagged FAK(ΔC14) expression vector. This work was supported by National Cancer Institute, American Cancer Society and American Heart Association grants to D.D.S. D.J.S was supported by an NIH postdoctoral training grant; C.R.H by the Deutsche Forschungsgemeinschaft (HA-2856/1-1); D.I. by the UCSF Academic Senate; and C.H.D by the American Heart Association.

Correspondence and requests for materials should be addressed to D.D.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Schlaepfer.

Supplementary information

Figure S1

Comparisons of the expression levels of FAK, Pyk2, EGF receptor (EGFR), PDGF receptor (PDGFR) and p130 Cas in FAK+/+, FAK-/- and DA2 cells. All cells are p53-/-. (PDF 71 kb)

Figure S2 In vivo recruitment of FAK to apical attachment sites of beads coated with fibronectin (FN), EGF or fibronectin and EGF (FN+EGF) in DA2 and FAK+/+ fibroblasts.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sieg, D., Hauck, C., Ilic, D. et al. FAK integrates growth-factor and integrin signals to promote cell migration . Nat Cell Biol 2, 249–256 (2000). https://doi.org/10.1038/35010517

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010517

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing