Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway

Abstract

Skeletal muscle hypertrophy and regeneration are important adaptive responses to both physical activity and pathological stimuli1. Failure to maintain these processes underlies the loss of skeletal muscle mass and strength that occurs with ageing and in myopathies2. Here we show that stable expression of a gene encoding insulin-like growth factor 1 (IGF-1) in C2C12 skeletal muscle cells, or treatment of these cells with recombinant IGF-1 or with insulin and dexamethasone, results in hypertrophy of differentiated myotubes and a switch to glycolytic metabolism. Treatment with IGF-1 or insulin and dexamethasone mobilizes intracellular calcium, activates the Ca2+/calmodulin-dependent phosphatase calcineurin, and induces the nuclear translocation of the transcription factor NF-ATc1. Hypertrophy is suppressed by the calcineurin inhibitors cyclosporin A or FK506, but not by inhibitors of the MAP-kinase or phosphatidylinositol-3-OH kinase pathways. Injecting rat latissimus dorsi muscle with a plasmid encoding IGF-1 also activates calcineurin, mobilizes satellite cells and causes a switch to glycolytic metabolism. We propose that growth-factor-induced skeletal-muscle hypertrophy and changes in myofibre phenotype are mediated by calcium mobilization and are critically regulated by the calcineurin/NF-ATc1 signalling pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction and calcineurin-dependence of IGF-1-mediated hypertrophy in C2C12 cells.
Figure 2: Calcineurin phosphatase (CnPP) activity.
Figure 3: Induction and calcineurin-dependence of C2C12 cell myotube hypertrophy resulting from I/D treatment.
Figure 4: IGF-1-induced transformation of rat latissimus dorsi muscle (LDM).

Similar content being viewed by others

References

  1. Pette, D. & Staron, R. S. Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytology 170, 143–223 (1997).

    Article  CAS  Google Scholar 

  2. Barton-Davis, E. R. et al. Viral mediated expression of insulin-like growth factor 1 blocks the aging-related loss of skeletal muscle function. Porc. Natl Acad. Sci. USA 95, 15603–15607 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Florini, J. R., Ewton, D. Z. & Coolican, S. A. Growth hormone and the insulin-like growth factor system in myogenesis. Endocrine Rev. 17, 481–517 (1996).

    CAS  Google Scholar 

  4. Semsarian, C., Sutrave, P., Richmond, D. R. & Graham, R. M. IGF-induced myotube hypertrophy associated with an increase in anaerobic glycolysis in a clonal skeletal muscle cell model. Biochem. J. 339, 443–451 (1999).

    Article  CAS  Google Scholar 

  5. Tesch, P. A., Thorsson, A. & Kaiser, P. Muscle capillary supply and fiber type characteristics in weight and power lifters. J. Appl. Physiol: Respirat. Environ. Exercise Physiol. 56, 35–38 (1984).

    Article  CAS  Google Scholar 

  6. Sutrave, P., Kelly, A. M. & Hughes, S. H. ski can cause selective growth of skeletal muscle in transgenic mice. Genes Dev. 4, 1462–1472 (1990).

    Article  CAS  Google Scholar 

  7. Molkentin, J. D. et al. Acalcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  Google Scholar 

  8. Luo, Z., Shyu, K.-G., Gualberto, A. & Walsh, K. Calcineurin inhibitors and cardiac hypertrophy. Nature Med. 4, 1092–1093 (1998).

    Article  CAS  Google Scholar 

  9. Zhang, W. et al. Failure of calcineurin inhibitors to prevent pressure-overload left ventricular hypertrophy in rats. Cir. Res. 84, 722–728 (1999).

    Article  CAS  Google Scholar 

  10. Renganathan, M., Messi, M. L. & Delbono, O. Overexpression of IGF-1 exclusively in skeletal muscle prevents age-related decline in the number of dihydrophyridine receptors. J. Biol. Chem. 273, 28845–28851 (1998).

    Article  CAS  Google Scholar 

  11. Wang, Z. M., Messi, M. L., Renganathan, M. & Delbono, O. Insulin-like growth factor-1 enhances rat skeletal muscle charge movement and L-type Ca2+_ channel gene expression. J. Physiol. 516, 331–341 (1999).

    Article  CAS  Google Scholar 

  12. Kazaki, M., Nie, L., Shibata, H. & Kojima, I. Activation of a calcium-permeable cation channel CD20 expressed in Balb/C 3T3 cells by insulin-like growth factor-I. J. Biol. Chem. 272, 4964–4969 (1997).

    Article  Google Scholar 

  13. Coolican, S. A. et al. The mitogenic and myogenic actions of insulin-like growth factors utilize distinct signaling pathways. J. Biol. Chem. 272, 6653–6662 (1997).

    Article  CAS  Google Scholar 

  14. Musaro, A. & Rosenthal, N. Maturation of the myogenic program is induced by post-mitotic expression of IGF-1. Mol. Cell. Biol. 19, 3115–3124 (1999).

    Article  CAS  Google Scholar 

  15. Montano, M. M. & Lim, R. W. Glucocorticoid effects on the skeletal muscle differentiation program: analysis of clonal proliferation, morphological differentiation and the expression of muscle-specific regulatory genes. Endocr. Res. 23, 37–57 (1997).

    Article  CAS  Google Scholar 

  16. Giorgino, F. & Smith, R. J. Dexamethosone enhances insulin-like growth factor-1 effects on skeletal muscle cell proliferation. J. Clin. Invest. 96, 1473–1483 (1995).

    Article  CAS  Google Scholar 

  17. Bruton, J. D., Katz, A. & Westerblad, H. Insulin increase near-membrane but not global Ca2+ in isolated skeletal muscle. Proc. Natl Acad. Sci. USA 96, 3281–3286 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Chin, E. R. et al. Acalcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499–2509 (1998).

    Article  CAS  Google Scholar 

  19. Abbott, K. L. et al. Activation and cellular localization of the cyclosporine A-sensitive transcription factor NF-AT in skeletal muscle cells. Mol. Biol. Cell 9, 2905–2916 (1998).

    Article  CAS  Google Scholar 

  20. Beals, C. R. et al. Nuclear export of NF-ATc enhanced by glocogen synthase kinase-3. Science 275, 1930–1933 (1997).

    Article  CAS  Google Scholar 

  21. Rosenblatt, J. D. & Parry, D. J. Gamma irradiation prevents compensatory hypertrophy of overloaded mouse extensor digitorum longus muscle. J. Appl. Physiol. 73, 2538–2543 (1992).

    Article  CAS  Google Scholar 

  22. Musarò, A., McCullagh, K. J. A., Naya, F. J., Olson, E. N. & Rosenthal, N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1 Nature 400, 581–585 (1999).

    Article  ADS  Google Scholar 

  23. Dolmetsch, R. E., Lewis, R. S., Goodnow, C. C. & Healy, J. I. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386, 855–858 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Zhu, J. & McKeon, F. NF-AT activation requires suppression of Crm1-dependent export by calcineurin. Nature 398, 256–260 (1999).

    Article  ADS  CAS  Google Scholar 

  25. Hogan, P. G. & Rao, A. Modification by nuclear export? Nature 398, 200–201 (1999).

    Article  ADS  CAS  Google Scholar 

  26. Crabtree, G. R. Generic signals and specific outcomes: signaling through Ca2+ calcineurin, and NF-AT. Cell 96, 611–614 (1999).

    Article  CAS  Google Scholar 

  27. De Koninck, P. & Schulman, H. Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227–230 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Fruman, D. A. et al. Measurement of calcineurin phosphatase activity in cell extracts. Methods 9, 146–154 (1996).

    Article  CAS  Google Scholar 

  29. Lyakh, L., Ghosh, P. & Rice, N. R. Expression of NFAT-family proteins in normal human T cells. Mol. Cell. Biol. 17, 2465–2484 (1997).

    Article  Google Scholar 

  30. Ju, Y.-K. & Allen, D. G. Intracellular calcium and Na-Ca2+ exchange current in isolated toad pacemaker cells. J. Physiol. 508, 153–166 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by funds donated in memory of Diana, Princess of Wales. We thank P. Poronnik and C. Lee for IGF-1 expression vector reagents; N. Rosenthal for sharing unpublished data; P. Gunning for C2C12 cells; M. Fujioka (Fujisawa) for supplying FK506; C. Klee for the ‘Free Calcium’ program; K. Walsh, E. Hardeman, A. Gualberto and P. Sutrave for helpful discussions; and E.Martin and N. Groves for preparation for this manuscript. This work was supported by NH and MRC Medical Research Scholarships (to C.S. and T.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert M. Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semsarian, C., Wu, MJ., Ju, YK. et al. Skeletal muscle hypertrophy is mediated by a Ca2+-dependent calcineurin signalling pathway. Nature 400, 576–581 (1999). https://doi.org/10.1038/23054

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/23054

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing