Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcriptional control of megakaryocyte development

Abstract

Megakaryocytes are highly specialized cells that arise from a bipotent megakaryocytic-erythroid progenitor (MEP). This developmental leap requires coordinated activation of megakaryocyte-specific genes, radical changes in cell cycle properties, and active prevention of erythroid differentiation. These programs result from upregulation of megakaryocyte-selective transcription factors, downregulation of erythroid-selective transcription factors and ongoing mediation of common erythro-megakaryocytic transcription factors. Unlike most developmental programs, no single lineage-unique family of master regulators exerts executive control over the megakaryocytic plan. Rather, an assemblage of non-unique factors and signals converge to determine lineage and differentiation. In human megakaryopoiesis, hereditary disorders of platelet production have confirmed contributions from three distinct transcription factor families. Murine models have extended this repertoire to include multiple additional factors. At a mechanistic level, the means by which these non-unique factors collaborate in the establishment of a perfectly unique cell type remains a central question.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Adolfsson J, Mansson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT et al. (2005). Identification of FLt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential: a revised road map for adult blood lineage commitment. Cell 121: 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Akashi K, Traver D, Miyamoto T, Weissman IL . (2000). A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404: 193–197.

    Article  CAS  PubMed  Google Scholar 

  • Bastian LS, Kwiatkowski BA, Breininger J, Danner S, Roth G . (1999). Regulation of the megakaryocytic glycoprotein IX promoter by the oncogenic ets transcription factor Fli-1. Blood 93: 2637–2644.

    CAS  PubMed  Google Scholar 

  • Breton-Gorius J, Favier R, Guichard J, Cherif D, Berger R, Debili N et al. (1995). A new congenital dysmegakaryopoietic thrombocytopenia (Paris–Trousseau) associated with giant platelet α-granules and chromosome 11 deletion at 11q23. Blood 85: 1805–1814.

    CAS  PubMed  Google Scholar 

  • Buijs A, Poddighe P, van Wijk R, van Solinge W, Borst E, Verdonck L et al. (2001). A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood 98: 2856–2858.

    Article  CAS  PubMed  Google Scholar 

  • Cantor AB, Orkin SH . (2002). Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21: 3368–3376.

    Article  CAS  PubMed  Google Scholar 

  • Carpinelli MR, Hilton DJ, Metcalf D, Antonchuk JL, Hyland CD, Mifsud SL et al. (2004). Suppressor screen in Mpl−/− mice: c-Myb mutation causes supraphysiologic production of platelets in the absence of thrombopoietin signaling. Proc Natl Acad Sci USA 101: 6553–6558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Debili N, Coulombel L, Croisille L, Katz A, Guichard J, Breton-Gorius J et al. (1996). Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood 88: 1284–1296.

    CAS  PubMed  Google Scholar 

  • Deveaux S, Filipe A, Lemarchandel V, Ghysdael J, Romeo P-H, Mignotte V . (1996). Analysis of the thrombopoietin receptor (mpl) promoter implicates GATA and Ets proteins in the coregulation of megakaryocyte-specific genes. Blood 87: 4678–4685.

    CAS  PubMed  Google Scholar 

  • Dowton SB, Beardsley D, Jamison D, Blattner S, Li FP . (1985). Studies of a familial platelet disorder. Blood 65: 557–563.

    CAS  PubMed  Google Scholar 

  • Elagib KE, Racke FK, Mogass M, Khetawat R, Delehanty LL, Goldfarb AN . (2003). RUNX-1 and GATA-1 coexpression and cooperation in megakaryocytic differentiation. Blood 101: 4333–4341.

    Article  CAS  PubMed  Google Scholar 

  • Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J . (2003). Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J 22: 4478–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fossett N, Hyman K, Gajewski K, Orkin SH, Schulz RA . (2003). Combinatorial interactions of Serpent, Lozenge, and U-shaped regulate crystal cell lineage commitment during Drosophila hematopoiesis. Proc Natl Acad Sci USA 100: 11451–11456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freson K, Devriendt K, Matthijs G, Van Hoof A, De Vos R, Thys C et al. (2001). Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 98: 85–92.

    Article  CAS  PubMed  Google Scholar 

  • Freson K, Matthijs G, Thys C, Marien P, Hoylaerts MF, Vermylen J et al. (2002). Different substitutions at residue D218 of the X-linked transcription factor GATA-1 lead to altered clinical severity of macrothrombocytopenia and anemia and are associated with variable skewed X inactivation. Hum Mol Genet 11: 147–152.

    Article  CAS  PubMed  Google Scholar 

  • Growney JD, Shigematsu H, Li Z, Lee BH, Adelsperger J, Rowan R et al. (2005). Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106: 494–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart A, Melet F, Grossfeld P, Chien K, Jones C, Tunnacliffe A et al. (2000). Fli-1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia. Immunity 13: 167–177.

    Article  CAS  PubMed  Google Scholar 

  • Heller PG, Glembotsky AC, Gandhi MJ, Cummings CL, Pirola CJ, Marta RF et al. (2005). Low Mpl receptor expression in a pedigree with familial platelet disorder with predisposition to acute myelogenous leukemia and a novel AML1 mutation. Blood 105: 4664–4670.

    Article  CAS  PubMed  Google Scholar 

  • Ho CY, Otterud B, Legare RD, Varvil T, Saxena R, DeHart DB et al. (1996). Linkage of a familial platelet disorder with a propensity to develop myeloid malignancies to human chromosome 21q22.1-22.2. Blood 87: 5218–5224.

    CAS  PubMed  Google Scholar 

  • Hock H, Meade E, Medeiros S, Schindler JW, Valk PJM, Fujiwara Y et al. (2004). Tel/Etv6 is an essential and selective regulator of adult hematopoietic stem cell survival. Genes Dev 18: 2336–2341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollanda LM, Lima CSP, Cunha AF, Albuquerque DM, Vassallo J, Ozelo MC et al. (2006). An inherited mutation leading to production of only the short isoform of GATA-1 is associated with impaired erythropoiesis. Nat Genet 38: 807–812.

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa M, Asai T, Saito T, Yamamoto G, Seo S, Yamazaki I et al. (2004). AML1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nature Med 10: 299–304.

    Article  CAS  PubMed  Google Scholar 

  • Kasper LH, Boussouar F, Ney PA, Jackson CW, Rehg J, van Deursen JM et al. (2002). A transcription-factor-binding surface of coactivator p300 is required for haematopoiesis. Nature 419: 738–743.

    Article  CAS  PubMed  Google Scholar 

  • Kuhl C, Atzberger A, Iborra F, Nieswandt B, Porcher C, Vyas P . (2005). GATA1-mediated megakaryocyte differentiation and growth control can be uncoupled and mapped to different domains in GATA1. Mol Cell Biol 25: 8592–8606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu M, Chen A, Anderson S, Kirby M, Xu L, Castilla LH et al. (2002). Role of Cbfb in hematopoiesis and perturbations resulting from expression of the leukemogenic fusion gene Cbfb-MYH11. Blood 100: 2449–2456.

    Article  CAS  PubMed  Google Scholar 

  • Kuo Y-H, Landrette SF, Heilman SA, Perrat PN, Garrett L, Liu PP et al. (2006). Cbf beta-SMMHC induces distinct abnormal myeloid progenitors able to develop acute myeloid leukemia. Cancer Cell 9: 57–68.

    Article  CAS  PubMed  Google Scholar 

  • Levanon D, Brenner O, Negreanu V, Bettoun D, Woolf E, Eilam R et al. (2001). Spatial and temporal expression pattern of Runx3 (Aml2) and Runx1 (Aml1) indicates non-redundant functions during mouse embryogenesis. Mech Dev 109: 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Liew CK, Simpson RJY, Kwan AHY, Crofts LA, Loughlin FE, Matthews JM et al. (2005). Zinc fingers as protein recognition motifs: structural basis for the GATA-1/Friend of GATA interaction. Proc Natl Acad Sci USA 102: 583–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Cheney MD, Gaudet JJ, Chruszcz M, Lukasik SM, Sugiyama D et al. (2006). The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity. Cancer Cell 9: 249–260.

    Article  PubMed  Google Scholar 

  • Lorsbach RB, Moore J, Ang SO, Sun W, Lenny N, Downing JR . (2004). Role of RUNX1 in adult hematopoiesis: analysis of RUNX1-IRES-GFP knock-in mice reveals differential lineage expression. Blood 103: 2522–2529.

    Article  CAS  PubMed  Google Scholar 

  • Ludlow LB, Schick BP, Budarf ML, Driscoll DA, Zackai EH, Cohen A et al. (1996). Identification of a mutation in a GATA binding site of the platelet glycoprotein Ibβ promoter resulting in the Bernard–Soulier syndrome. J Biol Chem 271: 22076–22080.

    Article  CAS  PubMed  Google Scholar 

  • Lulli V, Romania P, Morsilli O, Gabbianelli M, Pagliuca A, Mazzeo S et al. (2006). Overexpression of Ets-1 in human hematopoietic progenitor cells blocks erythroid and promotes megakaryocytic differentiation. Cell Death Diff 13: 1064–1074.

    Article  CAS  Google Scholar 

  • Manz MG, Miyamoto T, Akashi K, Weissman IL . (2002). Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 99: 11872–11877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matheny CJ, Speck ME, Cushing PR, Zhou Y, Corpora T, Regan M et al. (2007). Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. EMBO J 26: 1163–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehaffey MG, Newton AL, Gandhi MJ, Crossley M, Drachman JG . (2001). X-linked thrombocytopenia caused by a novel mutation of GATA-1. Blood 98: 2681–2688.

    Article  CAS  PubMed  Google Scholar 

  • Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N et al. (2002). In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood 99: 1364–1372.

    Article  CAS  PubMed  Google Scholar 

  • Mukai HY, Motohashi H, Ohneda O, Suzuki N, Nagano M, Yamamoto M . (2006). Transgene insertion in proximity to the c-myb gene disrupts erythroid-megakaryocytic lineage bifurcation. Mol Cell Biol 26: 7953–7965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muntean AG, Crispino JD . (2005). Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Blood 106: 1223–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols KE, Crispino JD, Poncz M, White JG, Orkin SH, Maris JM et al. (2000). Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA-1. Nature Genet 24: 266–270.

    Article  CAS  PubMed  Google Scholar 

  • Pang L, Xue H-H, Szalai G, Wang X, Wang Y, Watson DK et al. (2006). Maturation stage-specific regulation of megakaryopoiesis by pointed-domain Ets proteins. Blood 108: 2198–2206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JD, Steensma DP, Pulsipher MA, Spangrude GJ, Kushner JP . (2007). Congenital erythropoietic porphyria due to a mutation in GATA1: the first trans-acting mutation causative for a human porphyria. Blood 109: 2618–2621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putz G, Rosner A, Nuesslein I, Schmitz N, Buchholz F . (2006). AML1 deletion in adult mice causes splenomegaly and lymphomas. Oncogene 25: 929–939.

    Article  CAS  PubMed  Google Scholar 

  • Raskind WH, Niakan KK, Wolff J, Matsushita M, Vaughan T, Stamatoyannopoulos G et al. (2000). Mapping of a syndrome of X-linked thrombocytopenia with thalassemia to band Xp11–12: further evidence of genetic heterogeneity of X-linked thrombocytopenia. Blood 95: 2262–2268.

    CAS  PubMed  Google Scholar 

  • Raslova H, Komura E, Le Couedic JP, Larbret F, Debili N, Feunteun J et al. (2004). FLI1 monoallelic expression combined with its hemizygous loss underlies Paris–Trousseau/Jacobsen thrombocytopenia. J Clin Invest 114: 77–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandberg ML, Sutton SE, Pletcher MT, Wiltshire T, Tarantino LM, Hogenesch JB et al. (2005). c-Myb and p300 regulate hematopoietic stem cell proliferation and differentiation. Dev Cell 8: 153–166.

    Article  CAS  PubMed  Google Scholar 

  • Song W-J, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D et al. (1999). Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukemia. Nat Genet 23: 166–175.

    Article  CAS  PubMed  Google Scholar 

  • Spyropoulos DD, Pharr PN, Lavenburg KR, Jackers P, Papas TS, Ogawa M et al. (2000). Hemorrhage, impaired hematopoiesis, and lethality in mouse embryos carrying a targeted disruption of the Fli1 transcription factor. Mol Cell Biol 20: 5643–5652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachura DL, Chou ST, Weiss MJ . (2006). Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1. Blood 107: 87–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Starck J, Cohet N, Gonnet C, Sarrazin S, Doubeikovskaia Z, Doubeikovski A et al. (2003). Functional cross-antagonism between transcription factors FLI-1 and EKLF. Mol Cell Biol 23: 1390–1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stumpf M, Waskow C, Krotschel M, van Essen D, Rodriguez P, Zhang X et al. (2006). The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc Natl Acad Sci USA 103: 18504–18509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Mao G, Rao AK . (2004). Association of CBFA2 mutation with decreased platelet PKC-theta and impaired receptor-mediated activation of GPIIb-IIIa and pleckstrin phosphorylation: proteins regulated by CBFA2 play a role in GPIIb-IIIa activation. Blood 103: 948–954.

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Downing JR . (2004). Haploinsufficiency of AML1 results in a decrease in the number of LTR-HSC while simultaneously inducing an increase in more mature progenitors. Blood 104: 3565–3572.

    Article  CAS  PubMed  Google Scholar 

  • Talebian L, Li Z, Guo Y, Gaudet JJ, Speck ME, Sugiyama D et al. (2007). T-lymphoid, megakaryocyte, and granulocyte development are sensitive to decreases in CBFβ dosage. Blood 109: 11–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tracey WD, Speck NA . (2000). Potential roles for RUNX1 and its orthologs in determining hematopoietic cell fate. Sem Cell Dev Biol 11: 337–342.

    Article  CAS  Google Scholar 

  • Vyas P, Ault K, Jackson CW, Orkin SH, Shivdasani RA . (1999). Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 93: 2867–2875.

    CAS  PubMed  Google Scholar 

  • Walker LC, Stevens J, Campbell H, Corbett R, Spearing R, Heaton D et al. (2002). A novel inherited mutation of the transcription factor RUNX1 causes thrombocytopenia and may predispose to acute myeloid leukaemia. Br J Haematol 117: 878–881.

    Article  CAS  PubMed  Google Scholar 

  • Waltzer L, Ferjoux G, Bataille L, Haenlin M . (2003). Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. EMBO J 22: 6516–6525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Crispino JD, Letting DL, Nakazawa M, Poncz M, Blobel GA . (2002). Control of megakaryocyte-specific gene expression by GATA-1 and FOG-1: role of Ets transcription factors. EMBO J 21: 5225–5234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu G, Kanezaki R, Toki T, Watanabe S, Takahashi Y, Terui K et al. (2006). Physical association of the patient-specific GATA1 mutants with RUNX1 in acute megakaryoblastic leukemia accompanying Down syndrome. Leukemia 20: 1002–1008.

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Niakan KK, Matsushita M, Stamatoyannopoulos G, Orkin SH, Raskind WH . (2002). X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction. Blood 100: 2040–2045.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Kamal Elagib and Ivo Mihaylov for ongoing discussions on megakaryocytic transcriptional regulation. The study has been supported by NIH Grants CA100057 and CA93735.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A N Goldfarb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldfarb, A. Transcriptional control of megakaryocyte development. Oncogene 26, 6795–6802 (2007). https://doi.org/10.1038/sj.onc.1210762

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210762

Keywords

This article is cited by

Search

Quick links