Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic identification of ADAMTS18 as a novel 16q23.1 tumor suppressor frequently silenced in esophageal, nasopharyngeal and multiple other carcinomas

Abstract

Tumor suppressor genes (TSGs) often locate at chromosomal regions with frequent deletions in tumors. Loss of 16q23 occurs frequently in multiple tumors, indicating the presence of critical TSGs at this locus, such as the well-studied WWOX. Herein, we found that ADAMTS18, located next to WWOX, was significantly downregulated in multiple carcinoma cell lines. No deletion of ADAMTS18 was detected with multiplex differential DNA-PCR or high-resolution 1-Mb array-based comparative genomic hybridization (CGH) analysis. Instead, methylation of the ADAMTS18 promoter CpG Island was frequently detected with methylation-specific PCR and bisulfite genome sequencing in multiple carcinoma cell lines and primary carcinomas, but not in any nontumor cell line and normal epithelial tissue. Both pharmacological and genetic demethylation dramatically induced the ADAMTS18 expression, indicating that CpG methylation directly contributes to the tumor-specific silencing of ADAMTS18. Ectopic ADAMTS18 expression led to significant inhibition of both anchorage-dependent and -independent growth of carcinoma cells lacking the expression. Thus, through functional epigenetics, we identified ADAMTS18 as a novel functional tumor suppressor, being frequently inactivated epigenetically in multiple carcinomas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  • Balsara BR, Pei J, De RA, Simon D, Tosolini A, Lu YY et al. (2001). Human hepatocellular carcinoma is characterized by a highly consistent pattern of genomic imbalances, including frequent loss of 16q23.1–24.1. Genes Chromosomes Cancer 30: 245–253.

    Article  CAS  PubMed  Google Scholar 

  • Baylin SB, Herman JG . (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16: 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Bishop JM . (1996). The discovery of proto-oncogenes. FASEB J 10: 362–364.

    Article  CAS  PubMed  Google Scholar 

  • Busson P, Ganem G, Flores P, Mugneret F, Clausse B, Caillou B et al. (1988). Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas. Int J Cancer 42: 599–606.

    Article  CAS  PubMed  Google Scholar 

  • Cal S, Obaya AJ, Llamazares M, Garabaya C, Quesada V, Lopez-Otin C . (2002). Cloning, expression analysis, and structural characterization of seven novel human ADAMTSs, a family of metalloproteinases with disintegrin and thrombospondin-1 domains. Gene 283: 49–62.

    Article  CAS  PubMed  Google Scholar 

  • Chan SL, Cui Y, van HA, Li H, Srivastava G, Jin H et al. (2007). The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas. Lab Invest. doi: 10.1038.

  • Cottrell SE, Laird PW . (2003). Sensitive detection of DNA methylation. Ann NY Acad Sci 983: 120–130.

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Tsao SW, Guan XY, Lucas JN, Si HX, Leung CS et al. (2004). Distinct profiles of critically short telomeres are a key determinant of different chromosome aberrations in immortalized human cells: whole-genome evidence from multiple cell lines. Oncogene 23: 9090–9101.

    Article  CAS  PubMed  Google Scholar 

  • Dunn JR, Panutsopulos D, Shaw MW, Heighway J, Dormer R, Salmo EN et al. (2004). METH-2 silencing and promoter hypermethylation in NSCLC. Br J Cancer 91: 1149–1154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gius D, Bradbury CM, Sun L, Awwad RT, Huang L, Smart DD et al. (2005). The epigenome as a molecular marker and target. Cancer 104: 1789–1793.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Sperka T, Herrlich P, Morrison H . (2006). Tumorigenic transformation by CPI-17 through inhibition of a merlin phosphatase. Nature 442: 576–579.

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Knudson AG . (2001). Two genetic hits (more or less) to cancer. Nat Rev Cancer 1: 157–162.

    Article  CAS  PubMed  Google Scholar 

  • Lind GE, Kleivi K, Meling GI, Teixeira MR, Thiis-Evensen E, Rognum TO et al. (2006). ADAMTS1, CRABP1, and NR3C1 identified as epigenetically deregulated genes in colorectal tumorigenesis. Cell Oncol 28: 259–272.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo KW, Teo PM, Hui AB, To KF, Tsang YS, Chan SY et al. (2000). High resolution allelotype of microdissected primary nasopharyngeal carcinoma. Cancer Res 60: 3348–3353.

    CAS  PubMed  Google Scholar 

  • Lo PH, Leung AC, Kwok CY, Cheung WS, Ko JM, Yang LC et al. (2007). Identification of a tumor suppressive critical region mapping to 3p14.2 in esophageal squamous cell carcinoma and studies of a candidate tumor suppressor gene, ADAMTS9. Oncogene 26: 148–157.

    Article  CAS  PubMed  Google Scholar 

  • Luque A, Carpizo DR, Iruela-Arispe ML . (2003). ADAMTS1/METH1 inhibits endothelial cell proliferation by direct binding and sequestration of VEGF165. J Biol Chem 278: 23656–23665.

    Article  CAS  PubMed  Google Scholar 

  • Masui T, Hosotani R, Tsuji S, Miyamoto Y, Yasuda S, Ida J et al. (2001). Expression of METH-1 and METH-2 in pancreatic cancer. Clin Cancer Res 7: 3437–3443.

    CAS  PubMed  Google Scholar 

  • Mori Y, Matsunaga M, Abe T, Fukushige S, Miura K, Sunamura M et al. (1999). Chromosome band 16q24 is frequently deleted in human gastric cancer. Br J Cancer 80: 556–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakata S, Sugio K, Uramoto H, Oyama T, Hanagiri T, Morita M et al. (2006). The methylation status and protein expression of CDH1, p16(INK4A), and fragile histidine triad in nonsmall cell lung carcinoma: epigenetic silencing, clinical features, and prognostic significance. Cancer 106: 2190–2199.

    Article  CAS  PubMed  Google Scholar 

  • Paige AJ, Taylor KJ, Taylor C, Hillier SG, Farrington S, Scott D et al. (2001). WWOX: a candidate tumor suppressor gene involved in multiple tumor types. Proc Natl Acad Sci USA 98: 11417–11422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20: 207–211.

    Article  CAS  PubMed  Google Scholar 

  • Ponder BA . (2001). Cancer genetics. Nature 411: 336–341.

    Article  CAS  PubMed  Google Scholar 

  • Porter S, Clark IM, Kevorkian L, Edwards DR . (2005). The ADAMTS metalloproteinases. Biochem J 386: 15–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter S, Scott SD, Sassoon EM, Williams MR, Jones JL, Girling AC et al. (2004). Dysregulated expression of adamalysin-thrombospondin genes in human breast carcinoma. Clin Cancer Res 10: 2429–2440.

    Article  CAS  PubMed  Google Scholar 

  • Qiu GH, Tan LK, Loh KS, Lim CY, Srivastava G, Tsai ST et al. (2004). The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene 23: 4793–4806.

    Article  CAS  PubMed  Google Scholar 

  • Riegman PH, Vissers KJ, Alers JC, Geelen E, Hop WC, Tilanus HW et al. (2001). Genomic alterations in malignant transformation of Barrett's esophagus. Cancer Res 61: 3164–3170.

    CAS  PubMed  Google Scholar 

  • Seng TJ, Low JS, Li H, Cui Y, Goh HK, Wong ML et al. (2007). The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene 26: 934–944.

    Article  CAS  PubMed  Google Scholar 

  • Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science 314: 268–274.

    Article  PubMed  Google Scholar 

  • Tao Q, Huang H, Geiman TM, Lim CY, Fu L, Qiu GH et al. (2002). Defective de novo methylation of viral and cellular DNA sequences in ICF syndrome cells. Hum Mol Genet 11: 2091–2102.

    Article  CAS  PubMed  Google Scholar 

  • Tao Q, Swinnen LJ, Yang J, Srivastava G, Robertson KD, Ambinder RF . (1999). Methylation status of the Epstein-Barr virus major latent promoter C in iatrogenic B cell lymphoproliferative disease. Application of PCR-based analysis. Am J Pathol 155: 619–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW et al. (2006). Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 25: 1070–1080.

    Article  CAS  PubMed  Google Scholar 

  • Ying J, Srivastava G, Hsieh WS, Gao Z, Murray P, Liao SK et al. (2005). The stress-responsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res 11: 6442–6449.

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Jiang W, Ren C, Yin Z, Feng X, Liu W et al. (2005). Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr Virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues. Neoplasia 7: 809–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This project was supported by a Michael and Betty Kadoorie Cancer Genetics Research Program (MBKCGRP) grant to QT. We thank Drs Bert Vogelstein, George Tsao, (Dolly Huang), Kaitai Yao, Ya Cao, Michael Oberst and Shuen-Kuei Liao for some cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Tao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Wang, X., Ying, J. et al. Epigenetic identification of ADAMTS18 as a novel 16q23.1 tumor suppressor frequently silenced in esophageal, nasopharyngeal and multiple other carcinomas. Oncogene 26, 7490–7498 (2007). https://doi.org/10.1038/sj.onc.1210559

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210559

Keywords

This article is cited by

Search

Quick links