Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Association and linkage of α-2A adrenergic receptor gene polymorphisms with childhood ADHD

Abstract

Attention-deficit hyperactivity disorder (ADHD) is a heritable disorder, prevalent from childhood through adulthood. Although the noradrenergic (NA) system is thought to mediate a portion of the pathophysiology of ADHD, genes in this pathway have not been investigated as frequently as those in the dopaminergic system. Previous association studies of one candidate gene in the NA system, ADRA2A, showed inconsistent results with regard to an MspI polymorphism. In the current study, two nearby single-nucleotide polymorphisms, which define HhaI and DraI restriction fragment length polymorphisms, were also genotyped and were in significant linkage disequilibrium with the MspI RFLP. Transmission disequilibrium tests (TDTs) in a sample of 177 nuclear families showed significant association and linkage of the DraI polymorphism with the ADHD combined subtype (P=0.03), and the quantitative TDT showed association of this polymorphism with the inattentive (P=0.003) and hyperactive-impulsive (P=0.015) symptom dimensions. The haplotype that contained the less common allele of the DraI polymorphism likewise showed a strong relationship with the inattentive (P=0.001) and hyperactive-impulsive (P=0.004) symptom dimensions. This study supports the hypothesis that an allele of the ADRA2A gene is associated and linked with the ADHD combined subtype and suggests that the DraI polymorphism of ADRA2A is linked to a causative polymorphism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th edn.—Text revision. APA Press: Washington, DC, 2000.

  2. Faraone SV, Doyle AE . The nature and heritability of attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 2001; 10: 299–316, viii–ix.

    Article  CAS  Google Scholar 

  3. Spencer TJ, Biederman J, Wilens TE, Faraone SV . Overview and neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63 (Suppl 12): 3–9.

    Google Scholar 

  4. Willcutt EG, Pennington BF, DeFries JC . Etiology of inattention and hyperactivity/impulsivity in a community sample of twins with learning difficulties. J Abnorm Child Psychol 2000; 28: 149–159.

    Article  CAS  Google Scholar 

  5. Smalley SL . Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet 1997; 60: 1276–1282.

    Article  CAS  Google Scholar 

  6. Greenhill L . Clinical effects of stimulant medication in ADHD. In: Solanto MV, Arnsten AFT, Castellanos FX (eds). Stimulant Drugs and ADHD: Basic and Clinical Neuroscience. Oxford University Press: New York, 2001 pp 31–72.

    Google Scholar 

  7. Faraone SV, Doyle AE, Mick E, Biederman J . Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 2001; 158: 1052–1057.

    Article  CAS  Google Scholar 

  8. Maher BS, Marazita ML, Ferrell RE, Vanyukov MM . Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatr Genet 2002; 12: 207–215.

    Article  Google Scholar 

  9. Lowe N, Kirley A, Hawi Z, Sham P, Wickham H, Kratochvil CJ et al. Joint analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly inattentive and combined subtypes. Am J Hum Genet 2004; 74: 348–356.

    Article  CAS  Google Scholar 

  10. Arnsten AF, Steere JC, Hunt RD . The contribution of alpha 2-noradrenergic mechanisms of prefrontal cortical cognitive function. Potential significance for attention-deficit hyperactivity disorder. Arch Gen Psychiatry 1996; 53: 448–455.

    Article  CAS  Google Scholar 

  11. Arnsten AFT . Dopaminergic and noradrenergic influences on cognitive functions mediated by prefrontal cortex. In: Solanto MV, Arnsten AFT, Castellanos FX (eds). Stimulant Drugs and ADHD: Basic and Clinical Neuroscience. Oxford University Press: New York, 2001 pp 185–208.

    Google Scholar 

  12. Berridge CW . Arousal- and attention-related actions of the locus coeruleus-noradrenergic system: potential target in the therapeutic actions of amphetamine-like stimulants. In: Solanto MV, Arnsten AFT, Castellanos FX (eds). Stimulant Drugs and ADHD: Basic and Clinical Neuroscience. Oxford University Press: New York, 2001 pp 158–184.

    Google Scholar 

  13. Posner MPS . The attention system of the human brain. Annu Rev Neurosci 1990; 13: 25–42.

    Article  CAS  Google Scholar 

  14. Berger A, Posner MI . Pathologies of brain attentional networks. Neurosci Biobehav Rev 2000; 24: 3–5.

    Article  CAS  Google Scholar 

  15. Sergeant JA, Oosterlaan J, can der Meere J . Information processing and energetic factors in attention-deficit/hyperactivity disorder. In: Hogan HCQAE (ed). Handbook of Disruptive Behavior Disorders. Kluwer/Plenum: New York, 1999 pp 75–104.

    Chapter  Google Scholar 

  16. van der Meere J, Stemerdink N . The development of state regulation in normal children: an indirect comparison with children with ADHD. Dev Neuropsychol 1999; 16: 213–225.

    Article  Google Scholar 

  17. Barkley RA . Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 1997; 121: 65–94.

    Article  Google Scholar 

  18. Shaffer D, Fisher P, Lucas C . NIMH Diagnostic Interview Schedule for Children—IV. Ruane Center for Early Diagnosis, Division of Child Psychiatry, Columbia University: New York, 1997.

    Google Scholar 

  19. Zentall SZT . Optimal stimulation: a model of disordered activity and performance in normal and deviant children. Psychol Bull 1983; 94: 446–471.

    Article  CAS  Google Scholar 

  20. McCracken JT . A two-part model of stimulant action on attention-deficit hyperactivity disorder in children. J Neuropsychiatry Clin Neurosci 1991; 3: 201–209.

    Article  CAS  Google Scholar 

  21. Malone MA, Kershner JR, Swanson JM . Hemispheric processing and methylphenidate effects in attention-deficit hyperactivity disorder. J Child Neurol 1994; 9: 181–189.

    Article  CAS  Google Scholar 

  22. Barry RJ, Johnstone SJ, Clarke AR . A review of electrophysiology in attention-deficit/hyperactivity disorder: II. Event-related potentials. Clin Neurophysiol 2003; 114: 184–198.

    Article  Google Scholar 

  23. Losier BJ, McGrath PJ, Klein RM . Error patterns on the continuous performance test in non-medicated and medicated samples of children with and without ADHD: a meta-analytic review. J Child Psychol Psychiatry 1996; 37: 971–987.

    Article  CAS  Google Scholar 

  24. Huang-Pollock CL, Nigg JT . Searching for the attention deficit in attention deficit hyperactivity disorder: the case of visuospatial orienting. Clin Psychol Rev 2003; 23: 801–830.

    Article  Google Scholar 

  25. Oosterlaan J, Logan GD, Sergeant JA . Response inhibition in AD/HD, CD, comorbid AD/HD+CD, anxious, and control children: a meta-analysis of studies with the stop task. J Child Psychol Psychiatry 1998; 39: 411–425.

    Article  CAS  Google Scholar 

  26. Jakala P, Riekkinen M, Sirvio J, Koivisto E, Kejonen K, Vanhanen M et al. Guanfacine, but not clonidine, improves planning and working memory performance in humans. Neuropsychopharmacology 1999; 20: 460–470.

    Article  CAS  Google Scholar 

  27. Biederman J, Spencer T . Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biol Psychiatry 1999; 46: 1234–1242.

    Article  CAS  Google Scholar 

  28. Franowicz JS, Arnsten AF . The alpha-2a noradrenergic agonist, guanfacine, improves delayed response performance in young adult rhesus monkeys. Psychopharmacology (Berl) 1998; 136: 8–14.

    Article  CAS  Google Scholar 

  29. Comings DE, Gade-Andavolu R, Gonzalez N, Blake H, Wu S, MacMurray JP . Additive effect of three noradrenergic genes (ADRA2a, ADRA2C, DBH) on attention-deficit hyperactivity disorder and learning disabilities in Tourette syndrome subjects. Clin Genet 1999; 55: 160–172.

    Article  CAS  Google Scholar 

  30. Comings DE, Gonzalez NS, Cheng Li SC, MacMurray J . A ‘line item’ approach to the identification of genes involved in polygenic behavioral disorders: the adrenergic alpha2A (ADRA2A) gene. Am J Med Genet 2003; 118B: 110–114.

    Article  CAS  Google Scholar 

  31. Xu C, Schachar R, Tannock R, Roberts W, Malone M, Kennedy JL et al. Linkage study of the alpha2A adrenergic receptor in attention-deficit hyperactivity disorder families. Am J Med Genet 2001; 105: 159–162.

    Article  CAS  Google Scholar 

  32. Roman T, Schmitz M, Polanczyk GV, Eizirik M, Rohde LA, Hutz MH . Is the alpha-2A adrenergic receptor gene (ADRA2A) associated with attention-deficit/hyperactivity disorder? Am J Med Genet 2003; 120B: 116–120.

    Article  Google Scholar 

  33. Wechsler D . Wechsler Intelligence Scale for Children, 3rd edn. Psychological Corporation: San Antonio, TX, 1991.

    Google Scholar 

  34. Reynolds CKR . Behavior Assessment System for Children: Manual. American Guidance Service, Inc.: Circle Pines: Minnesota, 1992.

    Google Scholar 

  35. Conners K . Conners’ Rating Scales—Revised Technical Manual. Multi Health Systems: New York, NY, 1997.

    Google Scholar 

  36. Lahey BB, Applegate B, McBurnett K, Biederman J, Greenhill L, Hynd GW et al. DSM-IV field trials for attention deficit hyperactivity disorder in children and adolescents. Am J Psychiatry 1994; 151: 1673–1685.

    Article  CAS  Google Scholar 

  37. Robins LN, Cottler LB, Bucholz KK, Compton WM, North CS, Rourke KM . Diagnostic Interview Schedule for DSM-IV (DIS-IV). Washington University: St. Louis, MO, 1995.

    Google Scholar 

  38. Swanson JM, Lerner MA, March J, Gresham FM . Assessment and intervention for attention—deficit/hyperactivity disorder in schools: lessons from the MTA study. Ped Clin N Amer 1998; 46: 993–1009.

    Article  Google Scholar 

  39. Meulenbelt I, Droog S, Trommelen GJ, Boomsma DI, Slagboom PE . High-yield noninvasive human genomic DNA isolation method for genetic studies in geographically dispersed families and populations. Am J Hum Genet 1995; 57: 1252–1254.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ewens WJ, Spielman RS . The transmission/disequilibrium test: history, subdivision, and admixture. Am J Hum Genet 1995; 57: 455–464.

    Article  CAS  Google Scholar 

  41. Abecasis GR, Cardon LR, Cookson WO . A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000; 66: 279–292.

    Article  CAS  Google Scholar 

  42. Abecasis GR, Cookson WO, Cardon LR . Pedigree tests of transmission disequilibrium. Eur J Hum Genet 2000; 8: 545–551.

    Article  CAS  Google Scholar 

  43. Abecasis GR, Cookson WO . GOLD—graphical overview of linkage disequilibrium. Bioinformatics 2000; 16: 182–183.

    Article  CAS  Google Scholar 

  44. Milich R, Balentine AC, Lynam DR . ADHD combined type and ADHD predominantly inattentive type are distinct and unrelated disorders. Clin Psychol Sci Practice 2001; 8: 463–488.

    Article  Google Scholar 

  45. Pritchard JK, Przeworski M . Linkage disequilibrium in humans: models and data. Am J Hum Genet 2001; 69: 1–14.

    Article  CAS  Google Scholar 

  46. Comings DE . Clinical and molecular genetics of ADHD and Tourette syndrome. Two related polygenic disorders. Ann NY Acad Sci 2001; 931: 50–83.

    Article  CAS  Google Scholar 

  47. Lario S, Calls J, Cases A, Oriola J, Torras A, Rivera F . MspI identifies a biallelic polymorphism in the promoter region of the alpha 2A-adrenergic receptor gene. Clin Genet 1997; 51: 129–130.

    Article  CAS  Google Scholar 

  48. Feng J, Sobell JL, Heston LL, Goldman D, Cook Jr E, Kranzler HR et al. Variants in the alpha2A AR adrenergic receptor gene in psychiatric patients. Am J Med Genet 1998; 81: 405–410.

    Article  CAS  Google Scholar 

  49. Hoehe MR, Berrettini WH, Lentes KU . Dra I identifies a two allele DNA polymorphism in the human alpha 2-adrenergic receptor gene (ADRAR), using a 5.5 kb probe (p ADRAR). Nucleic Acids Res 1988; 16: 9070.

    Article  CAS  Google Scholar 

  50. Wolfarth B, Rivera MA, Oppert JM, Boulay MR, Dionne FT, Chagnon M et al. A polymorphism in the alpha2a-adrenoceptor gene and endurance athlete status. Med Sci Sports Exerc 2000; 32: 1709–1712.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the MSU Foundation (KF, JN) and NIMH grants MH59105 (JN) and MH-01818 (IDW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K H Friderici.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, L., Nigg, J., Waldman, I. et al. Association and linkage of α-2A adrenergic receptor gene polymorphisms with childhood ADHD. Mol Psychiatry 10, 572–580 (2005). https://doi.org/10.1038/sj.mp.4001605

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001605

Keywords

This article is cited by

Search

Quick links