Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cocaine, reward, movement and monoamine transporters

Abstract

Recent evidence enriches our understanding of the molecular sites of action of cocaine reward and locomotor stimulation. Dopamine transporter blockade by cocaine appears a sufficient explanation for cocaine-induced locomotion. Variation in DAT appears to cause differences in locomotion without drug stimulation. However, previously-held views that DAT blockade was the sole site for cocaine reward have been replaced by a richer picture of multitransporter involvement with the rewarding and aversive actions of cocaine. These new insights, derived from studies of knockout mice with simultaneous deletions and/or blockade of multiple transporters, provide a novel model for the rewarding action of this heavily-abused substance and implicate multiple monoamine systems in cocaine's hedonic activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Johanson CE, Fischman MW . The pharmacology of cocaine related to its abuse Pharmacol Rev 1989 41: 3–52

    CAS  PubMed  Google Scholar 

  2. Gawin FH . Cocaine addiction: psychology and neurophysiology Science 1991 251: 1580–1586

    CAS  PubMed  Google Scholar 

  3. Satel SL, Southwick SM, Gawin FH . Clinical features of cocaine induced paranoia NIDA Res Monogr 1991 105: 371

    Google Scholar 

  4. Kuhar MJ, Ritz MC, Boja JW . The dopamine hypothesis of the reinforcing properties of cocaine Trends Neurosci 1991 14: 299–302

    CAS  PubMed  Google Scholar 

  5. Spealman RD, Madras BK, Bergman J . Effects of cocaine and related drugs in nonhuman primates. II. Stimulant effects on schedule-controlled behavior J Pharmacol Exp Ther 1989 251: 142–149

    CAS  PubMed  Google Scholar 

  6. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ . Cocaine receptors on dopamine transporters are related to self-administration of cocaine Science 1987 237: 1219–1223

    CAS  PubMed  Google Scholar 

  7. Kuhar MJ, Ritz MC, Sharkey J . Cocaine receptors on dopamine transporters mediate cocaine-reinforced behavior NIDA Res Monogr 1988 88: 14–22

    CAS  PubMed  Google Scholar 

  8. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ . Cocaine self-administration appears to be mediated by dopamine uptake inhibition Prog Neuropsychopharmacol Biol Psychiatry 1988 12: 233–239

    CAS  PubMed  Google Scholar 

  9. Roberts DC, Corcoran ME, Fibiger HC . On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine Pharmacol Biochem Behav 1977 6: 615–620

    CAS  PubMed  Google Scholar 

  10. Roberts DC, Koob GF, Klonoff P, Fibiger HC . Extinction and recovery of cocaine self-administration following 6-hydroxydopamine lesions of the nucleus accumbens Pharmacol Biochem Behav 1980 12: 781–787

    CAS  PubMed  Google Scholar 

  11. Roberts DC, Koob GF . Disruption of cocaine self-administration following 6-hydroxydopamine lesions of the ventral tegmental area in rats Pharmacol Biochem Behav 1982 17: 901–904

    CAS  PubMed  Google Scholar 

  12. Lyness WH, Friedle NM, Moore KE . Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration Pharmacol Biochem Behav 1979 11: 553–556

    CAS  PubMed  Google Scholar 

  13. Edmonds DE, Gallistel CR . Reward versus performance in self-stimulation: electrode-specific effects of alpha-methyl-p-tyrosine on reward in the rat J Comp Physiol Psychol 1977 91: 962–974

    CAS  PubMed  Google Scholar 

  14. Gallistel CR, Boytim M, Gomita Y, Klebanoff L . Does pimozide block the reinforcing effect of brain stimulation? Pharmacol Biochem Behav 1982 17: 769–781

    CAS  PubMed  Google Scholar 

  15. Wasserman EM, Gomita Y, Gallistel CR . Pimozide blocks reinforcement but not priming from MFB stimulation in the rat Pharmacol Biochem Behav 1982 17: 783–787

    CAS  PubMed  Google Scholar 

  16. Gomita Y, Gallistel CR . Effects of reinforcement-blocking doses of pimozide on neural systems driven by rewarding stimulation of the MFB: a 14C-2-deoxyglucose analysis Pharmacol Biochem Behav 1982 17: 841–845

    CAS  PubMed  Google Scholar 

  17. Gallistel CR, Karras D . Pimozide and amphetamine have opposing effects on the reward summation function Pharmacol Biochem Behav 1984 20: 73–77

    CAS  PubMed  Google Scholar 

  18. Gunne LM, Anggard E, Jonsson LE . Clinical trials with amphetamine-blocking drugs Psychiatr Neurol Neurochir 1972 75: 225–226

    CAS  PubMed  Google Scholar 

  19. Wilson MC, Schuster CR . The effects of chlorpromazine on psychomotor stimulant self-administration in the rhesus monkey Psychopharmacologia 1972 26: 115–126

    CAS  PubMed  Google Scholar 

  20. Yokel RA, Wise RA . Attenuation of intravenous amphetamine reinforcement by central dopamine blockade in rats Psychopharmacol (Berl) 1976 48: 311–318

    CAS  Google Scholar 

  21. Yokel RA, Wise RA . Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward Science 1975 187: 547–549

    CAS  PubMed  Google Scholar 

  22. De Wit H, Wise RA . Blockade of cocaine reinforcement in rats with the dopamine receptor blocker pimozide, but not with the noradrenergic blockers phentolamine or phenoxybenzamine Can J Psychol 1977 31: 195–203

    CAS  PubMed  Google Scholar 

  23. Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P et al. Cloning and expression of a cocaine-sensitive dopamine transporter complementary DNA Science 1991 254: 576–578

    CAS  PubMed  Google Scholar 

  24. Kilty JE, Lorang D, Amara SG . Cloning and expression of a cocaine-sensitive rat dopamine transporter Science 1991 254: 578–579

    CAS  PubMed  Google Scholar 

  25. Giros B, el Mestikawy S, Godinot N, Zheng K, Han H, Yang-Feng T et al. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter Mol Pharmacol 1992 42: 383–390

    CAS  PubMed  Google Scholar 

  26. Vandenbergh DJ, Persico AM, Hawkins AL, Griffin CA, Li X, Jabs EW et al. Human dopamine transporter gene (DAT1) maps to chromosome 5p15.3 and displays a VNTR Genomics 1992 14: 1104–1106

    CAS  PubMed  Google Scholar 

  27. Vandenbergh DJ, Persico AM, Uhl GR . A human dopamine transporter cDNA predicts reduced glycosylation, displays a novel repetitive element and provides racially-dimorphic TaqI RFLPs Brain Res Mol Brain Res 1992 15: 161–166

    CAS  PubMed  Google Scholar 

  28. Lossie AC, Vandenbergh DJ, Uhl GR, Camper SA . Localization of the dopamine transporter gene, Datl, on mouse chromosome 13 Mamm Genome 1994 5: 117–118

    CAS  PubMed  Google Scholar 

  29. Vandenbergh DJ, Thompson MD, Cook EH, Bendahhou E, Nguyen T, Krasowski MD et al. Human dopamine transporter gene: coding region conservation among normal, Tourette's disorder, alcohol dependence and attention-deficit hyperactivity disorder populations Mol Psychiatry 2000 5: 283–292

    CAS  PubMed  Google Scholar 

  30. Donovan DM, Vandenbergh DJ, Perry MP, Bird GS, Ingersoll R, Nanthakumar E et al. Human and mouse dopamine transporter genes: conservation of 5′-flanking sequence elements and gene structures Brain Res Mol Brain Res 1995 30: 327–335

    CAS  PubMed  Google Scholar 

  31. Persico AM, Macciardi F . Genotypic association between dopamine transporter gene polymorphisms and schizophrenia Am J Med Genet 1997 74: 53–57

    CAS  PubMed  Google Scholar 

  32. Persico AM, Catalano M . Lack of association between dopamine transporter gene polymorphisms and delusional disorder Am J Med Genet 1998 81: 163–165

    CAS  PubMed  Google Scholar 

  33. Grunhage F, Schulze TG, Muller DJ, Lanczik M, Franzek E, Albus M et al. Systematic screening for DNA sequence variation in the coding region of the human dopamine transporter gene (DAT1) Mol Psychiatry 2000 5: 275–282

    CAS  PubMed  Google Scholar 

  34. Hamilton SP, Haghighi F, Heiman GA, Klein DF, Hodge SE, Fyer AJ et al. Investigation of dopamine receptor (DRD4) and dopamine transporter (DAT) polymorphisms for genetic linkage or association to panic disorder Am J Med Genet 2000 96: 324–330

    CAS  PubMed  Google Scholar 

  35. Kim JW, Kim DH, Kim SH, Cha JK . Association of the dopamine transporter gene with Parkinson's disease in Korean patients J Korean Med Sci 2000 15: 449–451

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Martinez D, Gelernter J, Abi-Dargham A, van Dyck CH, Kegeles L, Innis RB et al. The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans Neuropsychopharmacology 2001 24: 553–560

    CAS  PubMed  Google Scholar 

  37. Samochowiec J, Rybakowski F, Czerski P, Zakrzewska M, Stepié N et al. Polymorphisms in the dopamine, serotonin, and norepinephrine transporter genes and their relationship to temperamental dimensions measured by the temperament and character inventory in healthy volunteers Neuropsychobiology 2001 43: 248–253

    CAS  PubMed  Google Scholar 

  38. Heinz A, Goldman D, Jones DW, Palmour R, Hommer D, Gorey JG et al. Genotype influences in vivo dopamine transporter availability in human striatum Neuropsychopharmacology 2000 22: 133–139

    CAS  PubMed  Google Scholar 

  39. Kang AM, Palmatier MA, Kidd KK . Global variation of a 40-bp VNTR in the 3′-untranslated region of the dopamine transporter gene (SLC6A3) Biol Psychiatry 1999 46: 151–60

    CAS  PubMed  Google Scholar 

  40. Jonsson EG, Nothen MM, Gustavsson JP, Neidt H, Bunzel R, Propping P et al. Polymorphisms in the dopamine, serotonin, and norepinephrine transporter genes and their relationships to monoamine metabolite concentrations in CSF of healthy volunteers Psychiatry Res 1998 79: 1–9

    CAS  PubMed  Google Scholar 

  41. Leighton PW, Le Couteur DG, Pang CC, McCann SJ, Chan D, Law LK et al. The dopamine transporter gene and Parkinson's disease in a Chinese population Neurology 1997 49: 1577–1579

    CAS  PubMed  Google Scholar 

  42. Dobashi I, Inada T, Hadano K . Alcoholism and gene polymorphisms related to central dopaminergic transmission in the Japanese population Psychiatr Genet 1997 7: 87–91

    CAS  PubMed  Google Scholar 

  43. Plante-Bordeneuve V, Taussig D, Thomas F, Said G, Wood NW, Marsden CD et al. Evaluation of four candidate genes encoding proteins of the dopamine pathway in familial and sporadic Parkinson's disease: evidence for association of a DRD2 allele Neurology 1997 48: 1589–1593

    CAS  PubMed  Google Scholar 

  44. Fujiwara Y, Yamaguchi K, Tanaka Y, Tomita H, Shiro Y, Kashihara K et al. Polymorphism of dopamine receptors and transporter genes in neuropsychiatric diseases Eur Neurol 1997 38 (Suppl 1): 6–10

    Google Scholar 

  45. Inada T, Sugita T, Dobashi I, Inagaki A, Kitao Y, Matsuda G et al. Dopamine transporter gene polymorphism and psychiatric symptoms seen in schizophrenic patients at their first episode Am J Med Genet 1996 67: 406–408

    CAS  PubMed  Google Scholar 

  46. Gomez-Casero E, de Castro Perez I, Saiz-Ruiz J, Llinares C, Fernandez-Piqueras J . No association between particular DRD3 and DAT gene polymorphisms and manic-depressive illness in a Spanish sample Psychiatr Genet 1996 6: 209–212

    CAS  PubMed  Google Scholar 

  47. Bodeau-Pean S, Laurent C, Campion D, Jay M, Thibaut F, Dollfus S et al. No evidence for linkage or association between the dopamine transporter gene and schizophrenia in a French population Psychiatry Res 1995 59: 1–6

    CAS  PubMed  Google Scholar 

  48. Daniels J, Williams J, Asherson P, McGuffin P, Owen M . No association between schizophrenia and polymorphisms within the genes for debrisoquine 4-hydroxylase (CYP2D6) and the dopamine transporter (DAT) Am J Med Genet 1995 60: 85–87

    CAS  PubMed  Google Scholar 

  49. Gelernter J, Kranzler HR, Satel SL, Rao PA . Genetic association between dopamine transporter protein alleles and cocaine-induced paranoia Neuropsychopharmacology 1994 11: 195–200

    CAS  PubMed  Google Scholar 

  50. Persico AM, Vandenbergh DJ, Smith SS, Uhl GR . Dopamine transporter gene polymorphisms are not associated with polysubstance abuse Biol Psychiatry 1993 34: 265–267

    CAS  PubMed  Google Scholar 

  51. Persico AM, Wang ZW, Black DW, Andreasen NC, Uhl GR, Crowe RR . Exclusion of close linkage of the dopamine transporter gene with schizophrenia spectrum disorders Am J Psychiatry 1995 152: 134–136

    CAS  PubMed  Google Scholar 

  52. Sabol SZ, Nelson ML, Fisher C, Gunzerath L, Brody CL, Hu S et al. A genetic association for cigarette smoking behavior Health Psychol 1999 18: 7–13

    CAS  PubMed  Google Scholar 

  53. Lerman C, Caporaso NE, Audrain J, Main D, Bowman ED, Lockshin B et al. Evidence suggesting the role of specific genetic factors in cigarette smoking Health Psychol 1999 18: 14–20

    CAS  PubMed  Google Scholar 

  54. Miller GM, Yatin SM, De La Garza R 2nd, Goulet M, Madras BK . Cloning of dopamine, norepinephrine and serotonin transporters from monkey brain: relevance to cocaine sensitivity(1) Brain Res Mol Brain Res 2001 87: 124–143

    CAS  PubMed  Google Scholar 

  55. Miller GM, De La Garza RD 2nd, Novak MA, Madras BK . Single nucleotide polymorphisms distinguish multiple dopamine transporter alleles in primates: implications for association with attention deficit hyperactivity disorder and other neuropsychiatric disorders Mol Psychiatry 2001 6: 50–58

    CAS  PubMed  Google Scholar 

  56. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG . Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter Nature 1996 379: 606–612

    CAS  PubMed  Google Scholar 

  57. Donovan DM, Miner LL, Perry MP, Revay RS, Sharpe LG, Przedborski S et al. Cocaine reward and MPTP toxicity: alteration by regional variant dopamine transporter overexpression Brain Res Mol Brain Res 1999 73: 37–49

    CAS  PubMed  Google Scholar 

  58. Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R et al. Cocaine reward models: conditioned place preference can be established in dopamine- and in serotonin-transporter knockout mice Proc Natl Acad Sci USA 1998 95: 7699–7704

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhuang X, Oosting RS, Jones SR, Gainetdinov RR, Miller GW, Caron MG et al. Hyperactivity and impaired response habituation in hyperdopaminergic mice Proc Natl Acad Sci USA 2001 98: 1982–1987

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB et al. Molecular mechanisms of cocaine reward: combined dopamine and serotonin transporter knockouts eliminate cocaine place preference Proc Natl Acad Sci USA 2001 98: 5300–5305

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Xu F, Gainetdinov RR, Wetsel WC, Jones SR, Bohn LM, Miller GW et al. Mice lacking the norepinephrine transporter are supersensitive to psychostimulants Nat Neurosci 2000 3: 465–471

    CAS  PubMed  Google Scholar 

  62. Buck K, Lischka T, Dorow J, Crabbe J . Mapping quantitative trait loci that regulate sensitivity and tolerance to quinpirole, a dopamine mimetic selective for D(2)/D(3) receptors Am J Med Genet 2000 96: 696–705

    CAS  PubMed  Google Scholar 

  63. Barr CL, Xu C, Kroft J, Feng Y, Wigg K, Zai G et al. Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder Biol Psychiatry 2001 49: 333–339

    CAS  PubMed  Google Scholar 

  64. Daly G, Hawi Z, Fitzgerald M, Gill M . Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children Mol Psychiatry 1999 4: 192–196

    CAS  PubMed  Google Scholar 

  65. Waldman ID, Rowe DC, Abramowitz A, Kozel ST, Mohr JH, Sherman SL et al. Association and linkage of the dopamine transporter gene and attention- deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity Am J Hum Genet 1998 63: 1767–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Gill M, Daly G, Heron S, Hawi Z, Fitzgerald M . Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism Mol Psychiatry 1997 2: 311–313

    CAS  PubMed  Google Scholar 

  67. Cook EH Jr, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE et al. Association of attention-deficit disorder and the dopamine transporter gene Am J Hum Genet 1995 56: 993–998

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Swanson J, Posner M, Fusella J, Wasdell M, Sommer T, Fan J . Genes and attention deficit hyperactivity disorder Curr Psychiatry Rep 2001 3: 92–100

    CAS  PubMed  Google Scholar 

  69. Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B et al. Cocaine self-administration in dopamine-transporter knockout mice [published erratum appears in Nat Neurosci 1998; 1: 330] Nat Neurosci 1998 1: 132–137

    CAS  PubMed  Google Scholar 

  70. Hall FS, Sora I, Li XF, Lesch KP, Murphy DL, Xu F et al. Cocaine mechanisms: enhanced cocaine, fluoxetine and nisoxetine place preferences following monoamine transporter deletions J Neurosci (submitted)

  71. Rothman RB, Glowa JR . A review of the effects of dopaminergic agents on humans, animals, and drug-seeking behavior, and its implications for medication development. Focus on GBR 12909 Mol Neurobiol 1995 11: 1–19

    CAS  PubMed  Google Scholar 

  72. Carboni E, Spielewoy C, Vacca C, Nosten-Bertrand M, Giros B, Di Chiara G . Cocaine and amphetamine increase extracellular dopamine in the nucleus accumbens of mice lacking the dopamine transporter gene J Neurosci 2001 21: RC141

    PubMed  PubMed Central  Google Scholar 

  73. Yen TT, Fuller RW . Preclinical pharmacology of fluoxetine, a serotonergic drug for weight loss Am J Clin Nutr 1992 55(1 Suppl): 177S–180S

    Google Scholar 

  74. Tella SR . Effects of monoamine reuptake inhibitors on cocaine self-administration in rats Pharmacol Biochem Behav 1995 51: 687–692

    CAS  PubMed  Google Scholar 

  75. Zawertailo LA, Busto U, Kaplan HL, Sellers EM . Comparative abuse liability of sertraline, alprazolam, and dextroamphetamine in humans J Clin Psychopharmacol 1995 15: 117–124

    CAS  PubMed  Google Scholar 

  76. Grabowski J, Roache JD, Schmitz JM, Rhoades H, Creson D, Korszun A . Replacement medication for cocaine dependence: methylphenidate J Clin Psychopharmacol 1997 17: 485–488

    CAS  PubMed  Google Scholar 

  77. Lobl JK, Carbone LD . Emergency management of cocaine intoxication. Counteracting the effects of today's ‘favorite drug’ Postgrad Med 1992 91: 161–162 165–166

    CAS  PubMed  Google Scholar 

  78. Ettenberg A, Raven MA, Danluck DA, Necessary BD . Evidence for opponent-process actions of intravenous cocaine Pharmacol Biochem Behav 1999 64: 507–512

    CAS  PubMed  Google Scholar 

  79. DeVries AC, Pert A . Conditioned increases in anxiogenic-like behavior following exposure to contextual stimuli associated with cocaine are mediated by corticotropin-releasing factor Psychopharmacol (Berl) 1998 137: 333–340

    CAS  Google Scholar 

  80. DeVries AC, Taymans SE, Sundstrom JM, Pert A . Conditioned release of corticosterone by contextual stimuli associated with cocaine is mediated by corticotropin-releasing factor Brain Res 1998 786: 39–46

    CAS  PubMed  Google Scholar 

  81. Pickworth WB, Klein SA, Bunker EB, Henningfield JE . Assessment of mazindol for abuse liability NIDA Res Monogr 1991 105: 443

    Google Scholar 

  82. Chait LD, Uhlenhuth EH, Johanson CE . Reinforcing and subjective effects of several anorectics in normal human volunteers J Pharmacol Exp Ther 1987 242: 777–783

    CAS  PubMed  Google Scholar 

  83. Wilson MC, Schuster CR . Mazindol self-administration in the rhesus monkey Pharmacol Biochem Behav 1976 4: 207–210

    CAS  PubMed  Google Scholar 

  84. Bosse R, Fumagalli F, Jaber M, Giros B, Gainetdinov RR, Wetsel WC et al. Anterior pituitary hypoplasia and dwarfism in mice lacking the dopamine transporter Neuron 1997 19: 127–138

    CAS  PubMed  Google Scholar 

  85. Gainetdinov RR, Jones SR, Caron MG . Functional hyperdopaminergia in dopamine transporter knock-out mice Biol Psychiatry 1999 46: 303–311

    CAS  PubMed  Google Scholar 

  86. Bengel D, Murphy DL, Andrews AM, Wichems CH, Feltner D, Heils A et al. Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (‘Ecstasy’) in serotonin transporter-deficient mice Mol Pharmacol 1998 53: 649–655

    CAS  PubMed  Google Scholar 

  87. Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG . Profound neuronal plasticity in response to inactivation of the dopamine transporter Proc Natl Acad Sci USA 1998 95: 4029–4034

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Benoit-Marand M, Jaber M, Gonon F . Release and elimination of dopamine in vivo in mice lacking the dopamine transporter: functional consequences Eur J Neurosci 2000 12: 2985–2992

    CAS  PubMed  Google Scholar 

  89. Jaber M, Dumartin B, Sagne C, Haycock JW, Roubert C, Giros B et al. Differential regulation of tyrosine hydroxylase in the basal ganglia of mice lacking the dopamine transporter Eur J Neurosci 1999 11: 3499–3511

    CAS  PubMed  Google Scholar 

  90. Fauchey V, Jaber M, Caron MG, Bloch B, Le Moine C . Differential regulation of the dopamine D1, D2 and D3 receptor gene expression and changes in the phenotype of the striatal neurons in mice lacking the dopamine transporter Eur J Neurosci 2000 12: 19–26

    CAS  PubMed  Google Scholar 

  91. Liu QR, Hall FS, Sora I, Uhl GR . Unpublished data

  92. Stamford JA, Kruk ZL, Millar J . Striatal dopamine terminals release serotonin after 5-HTP pretreatment: in vivo voltammetric data Brain Res 1990 515: 173–180

    CAS  PubMed  Google Scholar 

  93. Vanhatalo S, Soinila S . Release of false transmitter serotonin from the dopaminergic nerve terminals of the rat pituitary intermediate lobe Neurosci Res 1995 22: 367–374

    CAS  PubMed  Google Scholar 

  94. Yadid G, Pacak K, Kopin IJ, Goldstein DS . Endogenous serotonin stimulates striatal dopamine release in conscious rats J Pharmacol Exp Ther 1994 270: 1158–1165

    CAS  PubMed  Google Scholar 

  95. Bonhomme N, De Deurwaerdere P, Le Moal M, Spampinato U . Evidence for 5-HT4 receptor subtype involvement in the enhancement of striatal dopamine release induced by serotonin: a microdialysis study in the halothane-anesthetized rat Neuropharmacology 1995 34: 269–279

    CAS  PubMed  Google Scholar 

  96. Boulenguez P, Rawlins JN, Chauveau J, Joseph MH, Mitchell SN, Gray JA . Modulation of dopamine release in the nucleus accumbens by 5-HT1B agonists: involvement of the hippocampo-accumbens pathway Neuropharmacology 1996 35: 1521–1529

    CAS  PubMed  Google Scholar 

  97. Lejeune F, Millan MJ . Induction of burst firing in ventral tegmental area dopaminergic neurons by activation of serotonin (5-HT)1A receptors: WAY 100,635- reversible actions of the highly selective ligands, flesinoxan and S 15535 Synapse 1998 30: 172–180

    CAS  PubMed  Google Scholar 

  98. West AR, Galloway MP . Regulation of serotonin-facilitated dopamine release in vivo: the role of protein kinase A activating transduction mechanisms Synapse 1996 23: 20–27

    CAS  PubMed  Google Scholar 

  99. Berretta N, Bernardi G, Mercuri NB . Alpha(1)-adrenoceptor-mediated excitation of substantia nigra pars reticulata neurons Neuroscience 2000 98: 599–604

    CAS  PubMed  Google Scholar 

  100. Bowers BJ, Henry MB, Thielen RJ, McBride WJ . Serotonin 5-HT(2) receptor stimulation of dopamine release in the posterior but not anterior nucleus accumbens of the rat J Neurochem 2000 75: 1625–1633

    CAS  PubMed  Google Scholar 

  101. Di Giovanni G, Di Matteo V, Di Mascio M, Esposito E . Preferential modulation of mesolimbic vs nigrostriatal dopaminergic function by serotonin(2C/2B) receptor agonists: a combined in vivo electrophysiological and microdialysis study Synapse 2000 35: 53–61

    CAS  PubMed  Google Scholar 

  102. Di Matteo V, Di Mascio M, Di Giovanni G, Esposito E . Acute administration of amitriptyline and mianserin increases dopamine release in the rat nucleus accumbens: possible involvement of serotonin2C receptors Psychopharmacol (Berl) 2000 150: 45–51

    CAS  Google Scholar 

  103. Shi WX, Pun CL, Zhang XX, Jones MD, Bunney BS . Dual effects of D-amphetamine on dopamine neurons mediated by dopamine and nondopamine receptors J Neurosci 2000 20: 3504–3511

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to each of the co-investigators who have contributed to this work, to helpful comments from Dr Steven Goldberg, and to financial support from the NIDA-IRP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G R Uhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhl, G., Hall, F. & Sora, I. Cocaine, reward, movement and monoamine transporters. Mol Psychiatry 7, 21–26 (2002). https://doi.org/10.1038/sj.mp.4000964

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4000964

Keywords

This article is cited by

Search

Quick links