Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

MTT

Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo

Abstract

NVP-LAQ824 is a novel potent hydroxamic acid-derived histone deacetylase inhibitor that induces apoptosis in nanomolar concentrations in myeloid leukemia cell lines and patient samples. Here we show the activity of NVP-LAQ824 in acute myeloid leukemia cells and BCR/ABL-expressing cells of mouse and human origin, both sensitive and resistant to imatinib mesylate (Gleevec, STI-571). Whereas imatinib inhibited overall cellular tyrosine phosphorylation in Ba/F3.p210 cells, NVP-LAQ824 did not inhibit tyrosine phosphorylation, and did not affect BCR/ABL or ABL protein expression. Neither compound was able to inhibit cellular tyrosine phosphorylation in the imatinib-resistant Ba/F3.p210-T315I cell line. These data taken together suggest that BCR/ABL kinase activity is not a direct target of NVP-LAQ824. Synergy between NVP-LAQ824 and imatinib was demonstrated against BCR/ABL-expressing K562 myeloid leukemia cell lines. In addition, we show that NVP-LAQ824 was well tolerated in vivo in a pre-clinical murine leukemia model, with antileukemia activity resulting in significant prolongation of the survival of mice when treated with NVP-LAQ824 compared to control mice. Taken together, these findings provide the framework for NVP-LAQ824 as a novel therapeutic in myeloid malignancies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK . Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1: 194–202.

    Article  CAS  PubMed  Google Scholar 

  2. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996; 84: 843–851.

    Article  CAS  PubMed  Google Scholar 

  3. Utley RT, Ikeda K, Grant PA, Cote J, Steger DJ, Eberharter A et al. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 1998; 394: 498–502.

    Article  CAS  PubMed  Google Scholar 

  4. Van Lint C, Emiliani S, Verdin E . The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996; 5: 245–253.

    CAS  PubMed  Google Scholar 

  5. Strahl BD, Allis CD . The language of covalent histone modifications. Nature 2000; 403: 41–45.

    Article  CAS  PubMed  Google Scholar 

  6. Deckert J, Struhl K . Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 2001; 21: 2726–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roth SY, Allis CD . Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 1996; 87: 5–8.

    Article  CAS  PubMed  Google Scholar 

  8. Redner RL, Wang J, Liu JM . Chromatin remodeling and leukemia: new therapeutic paradigms. Blood 1999; 94: 417–428.

    CAS  PubMed  Google Scholar 

  9. Sambucetti LC, Fischer DD, Zabludoff S, Kwon PO, Chamberlin H, Trogani N et al. Histone deacetylase inhibition selectively alters the activity and expression of cell cycle proteins leading to specific chromatin acetylation and antiproliferative effects. J Biol Chem 1999; 274: 34940–34947.

    Article  CAS  PubMed  Google Scholar 

  10. Richon VM, Sandhoff TW, Rifkind RA, Marks PA . Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 2000; 97: 10014–10019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Amann JM, Nip J, Strom DK, Lutterbach B, Harada H, Lenny N et al. ETO, a target of t(8;21) in acute leukemia, makes distinct contacts with multiple histone deacetylases and binds mSin3A through its oligomerization domain. Mol Cell Biol 2001; 21: 6470–6483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang J, Saunthararajah Y, Redner RL, Liu JM . Inhibitors of histone deacetylase relieve ETO-mediated repression and induce differentiation of AML1-ETO leukemia cells. Cancer Res 1999; 59: 2766–2769.

    CAS  PubMed  Google Scholar 

  13. Wang J, Hoshino T, Redner RL, Kajigaya S, Liu JM . ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc Natl Acad Sci USA 1998; 95: 10860–10865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lutterbach B, Westendorf JJ, Linggi B, Patten A, Moniwa M, Davie JR et al. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998; 18: 7176–7184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–818.

    Article  CAS  PubMed  Google Scholar 

  16. David G, Alland L, Hong SH, Wong CW, DePinho RA, Dejean A . Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein. Oncogene 1998; 16: 2549–2556.

    Article  CAS  PubMed  Google Scholar 

  17. Wu WS, Vallian S, Seto E, Yang WM, Edmondson D, Roth S et al. The growth suppressor PML represses transcription by functionally and physically interacting with histone deacetylases. Mol Cell Biol 2001; 21: 2259–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kitamura K, Hoshi S, Koike M, Kiyoi H, Saito H, Naoe T . Histone deacetylase inhibitor but not arsenic trioxide differentiates acute promyelocytic leukaemia cells with t(11;17) in combination with all-trans retinoic acid. Br J Haematol 2000; 108: 696–702.

    Article  CAS  PubMed  Google Scholar 

  19. Cote S, Rosenauer A, Bianchini A, Seiter K, Vandewiele J, Nervi C et al. Response to histone deacetylase inhibition of novel PML/RARalpha mutants detected in retinoic acid-resistant APL cells. Blood 2002; 100: 2586–2596.

    Article  CAS  PubMed  Google Scholar 

  20. Petti MC, Fazi F, Gentile M, Diverio D, De Fabritiis P, De Propris MS et al. Complete remission through blast cell differentiation in PLZF/RARalpha-positive acute promyelocytic leukemia: in vitro and in vivo studies. Blood 2002; 100: 1065–1067.

    Article  CAS  PubMed  Google Scholar 

  21. Huang S, Brandt SJ . mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Mol Cell Biol 2000; 20: 2248–2259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chambers AE, Banerjee S, Chaplin T, Dunne J, Debernardi S, Joel SP et al. Histone acetylation-mediated regulation of genes in leukaemic cells. Eur J Cancer 2003; 39: 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  23. Park SH, Kim JW, Sausville EA, Kim HT, Nakanishi O, Trepel JB et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 2001; 61: 931–934.

    PubMed  Google Scholar 

  24. Warrell Jr RP, He LZ, Richon V, Calleja E, Pandolfi PP . Therapeutic targeting of transcription in acute promyelocytic leukemia by use of an inhibitor of histone deacetylase. J Natl Cancer Inst 1998; 90: 1621–1625.

    Article  CAS  PubMed  Google Scholar 

  25. Guidez F, Ivins S, Zhu J, Soderstrom M, Waxman S, Zelent A . Reduced retinoic acid-sensitivities of nuclear receptor corepressor binding to PML- and PLZF-RARalpha underlie molecular pathogenesis and treatment of acute promyelocytic leukemia. Blood 1998; 91: 2634–2642.

    CAS  PubMed  Google Scholar 

  26. Catley L, Weisberg E, Tai YT, Atadja P, Remiszewski S, Hideshima T et al. NVP-LAQ824 is a potent novel histone deacetylase inhibitor with significant activity against multiple myeloma. Blood 2003; 102: 2615–2622.

    Article  CAS  PubMed  Google Scholar 

  27. Remiszewski SW, Sambucetti LC, Bair KW, Bontempo J, Cesarz D, Chandramouli N et al. N-hydroxy-3-phenyl-2-propenamides as novel inhibitors of human histone deacetylase with in vivo antitumor activity: discovery of (2E)-N-hydroxy-3-amino]methyl ]phenyl]-2-propenamide (NVP-LAQ824). J Med Chem 2003; 46: 4609–4624.

    Article  CAS  PubMed  Google Scholar 

  28. Atadja P, Gao L, Kwon P, Trogani N, Walker H, Hsu M et al. Selective growth inhibition of tumor cells by a novel histone deacetylase inhibitor, NVP-LAQ824. Cancer Res 2004; 64: 689–695.

    Article  CAS  PubMed  Google Scholar 

  29. Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J et al. Histone deacetylase inhibitor LAQ824 both lowers expression and promotes proteasomal degradation of Bcr-Abl and induces apoptosis of imatinib mesylate-sensitive or -refractory chronic myelogenous leukemia-blast crisis cells. Cancer Res 2003; 63: 5126–5135.

    CAS  PubMed  Google Scholar 

  30. Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H et al. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2003; 2: 971–984.

    CAS  PubMed  Google Scholar 

  31. Chou TC, Talalay P . Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 1984; 22: 27–55.

    Article  CAS  PubMed  Google Scholar 

  32. Han JW, Ahn SH, Park SH, Wang SY, Bae GU, Seo DW et al. Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 2000; 60: 6068–6074.

    CAS  PubMed  Google Scholar 

  33. Butler LM, Webb Y, Agus DB, Higgins B, Tolentino TR, Kutko MC et al. Inhibition of transformed cell growth and induction of cellular differentiation by pyroxamide, an inhibitor of histone deacetylase. Clin Cancer Res 2001; 7: 962–970.

    CAS  PubMed  Google Scholar 

  34. Lavelle D, Chen YH, Hankewych M, DeSimone J, Lee VS . Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol 2001; 68: 170–178.

    Article  CAS  PubMed  Google Scholar 

  35. Kurz EU, Wilson SE, Leader KB, Sampey BP, Allan WP, Yalowich JC et al. The histone deacetylase inhibitor sodium butyrate induces DNA topoisomerase II alpha expression and confers hypersensitivity to etoposide in human leukemic cell lines. Mol Cancer Ther 2001; 1: 121–131.

    CAS  PubMed  Google Scholar 

  36. Kwon SH, Ahn SH, Kim YK, Bae GU, Yoon JW, Hong S et al. Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 2002; 277: 2073–2080.

    Article  CAS  PubMed  Google Scholar 

  37. Mitsiades N, Mitsiades CS, Richardson PG, McMullan C, Poulaki V, Fanourakis G et al. Molecular sequelae of histone deacetylase inhibition in human malignant B cells. Blood 2003; 101: 4055–4062.

    Article  CAS  PubMed  Google Scholar 

  38. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996; 2: 561–566.

    Article  CAS  PubMed  Google Scholar 

  39. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ . Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 2000; 96: 3195–3199.

    CAS  PubMed  Google Scholar 

  40. Kano Y, Akutsu M, Tsunoda S, Mano H, Sato Y, Honma Y et al. In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97: 1999–2007.

    Article  CAS  PubMed  Google Scholar 

  41. Nimmanapalli R, Fuino L, Stobaugh C, Richon V, Bhalla K . Cotreatment with the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) enhances imatinib-induced apoptosis of Bcr-Abl-positive human acute leukemia cells. Blood 2003; 101: 3236–3239.

    Article  CAS  PubMed  Google Scholar 

  42. Pabst T, Mueller BU, Harakawa N, Schoch C, Haferlach T, Behre G et al. AML1-ETO downregulates the granulocytic differentiation factor C/EBPalpha in t(8;21) myeloid leukemia. Nat Med 2001; 7: 444–451.

    Article  CAS  PubMed  Google Scholar 

  43. Tanaka T, Tanaka K, Ogawa S, Kurokawa M, Mitani K, Yazaki Y et al. An acute myeloid leukemia gene, AML1, regulates transcriptional activation and hemopoietic myeloid cell differentiation antagonistically by two alternative spliced forms. Leukemia 1997; 11 (Suppl 3): 299–302.

    PubMed  Google Scholar 

  44. Olsson I, Bergh G, Ehinger M, Gullberg U . Cell differentiation in acute myeloid leukemia. Eur J Haematol 1996; 57: 1–16.

    Article  CAS  PubMed  Google Scholar 

  45. Shtivelman E, Lifshitz B, Gale RP, Canaani E . Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550–554.

    Article  CAS  PubMed  Google Scholar 

  46. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G . Structural organization of the bcr gene and its role in the Ph' translocation. Nature 1985; 315: 758–761.

    Article  CAS  PubMed  Google Scholar 

  47. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D . The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986; 233: 212–214.

    Article  CAS  PubMed  Google Scholar 

  48. Daley GQ, McLaughlin J, Witte ON, Baltimore D . The CML-specific P210 bcr/abl protein, unlike v-abl, does not transform NIH/3T3 fibroblasts. Science 1987; 237: 532–535.

    Article  CAS  PubMed  Google Scholar 

  49. Daley GQ, Baltimore D . Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myeloid leukemia-specific p210 BCR/ABL protein. Proc Natl Acad Sci USA 1988; 85: 9312–9316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McWhirter JR, Galasso DL, Wang JY . A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol Cell Biol 1993; 13: 7587–7595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rahmani M, Dai Y, Grant S . The histone deacetylase inhibitor sodium butyrate interacts synergistically with phorbol myristate acetate (PMA) to induce mitochondrial damage and apoptosis in human myeloid leukemia cells through a tumor necrosis factor-alpha-mediated process. Exp Cell Res 2002; 277: 31–47.

    Article  CAS  PubMed  Google Scholar 

  52. Lea MA, Randolph VM, Hodge SK . Induction of histone acetylation and growth regulation in eryrthroleukemia cells by 4-phenylbutyrate and structural analogs. Anticancer Res 1999; 19: 1971–1976.

    CAS  PubMed  Google Scholar 

  53. Bernhard D, Ausserlechner MJ, Tonko M, Loffler M, Hartmann BL, Csordas A et al. Apoptosis induced by the histone deacetylase inhibitor sodium butyrate in human leukemic lymphoblasts. FASEB J 1999; 13: 1991–2001.

    Article  CAS  PubMed  Google Scholar 

  54. Batova A, Shao LE, Diccianni MB, Yu AL, Tanaka T, Rephaeli A et al. The histone deacetylase inhibitor AN-9 has selective toxicity to acute leukemia and drug-resistant primary leukemia and cancer cell lines. Blood 2002; 100: 3319–3324.

    Article  CAS  PubMed  Google Scholar 

  55. Patnaik A, Rowinsky EK, Villalona MA, Hammond LA, Britten CD, Siu LL et al. A phase I study of pivaloyloxymethyl butyrate, a prodrug of the differentiating agent butyric acid, in patients with advanced solid malignancies. Clin Cancer Res 2002; 8: 2142–2148.

    CAS  PubMed  Google Scholar 

  56. Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 2001; 20: 6969–6978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sasakawa Y, Naoe Y, Inoue T, Sasakawa T, Matsuo M, Manda T et al. Effects of FK228, a novel histone deacetylase inhibitor, on human lymphoma U-937 cells in vitro and in vivo. Biochem Pharmacol 2002; 64: 1079–1090.

    Article  CAS  PubMed  Google Scholar 

  58. Murata M, Towatari M, Kosugi H, Tanimoto M, Ueda R, Saito H et al. Apoptotic cytotoxic effects of a histone deacetylase inhibitor, FK228, on malignant lymphoid cells. Jpn J Cancer Res 2000; 91: 1154–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kosugi H, Ito M, Yamamoto Y, Towatari M, Ueda R, Saito H et al. In vivo effects of a histone deacetylase inhibitor, FK228, on human acute promyelocytic leukemia in NOD/Shi-scid/scid mice. Jpn J Cancer Res 2001; 92: 529–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Marshall JL, Rizvi N, Kauh J, Dahut W, Figuera M, Kang MH et al. A phase I trial of depsipeptide (FR901228) in patients with advanced cancer. J Exp Ther Oncol 2002; 2: 325–332.

    Article  CAS  PubMed  Google Scholar 

  61. Sandor V, Bakke S, Robey RW, Kang MH, Blagosklonny MV, Bender J et al. Phase I trial of the histone deacetylase inhibitor, depsipeptide (FR901228, NSC 630176), in patients with refractory neoplasms. Clin Cancer Res 2002; 8: 718–728.

    CAS  PubMed  Google Scholar 

  62. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T et al. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci USA 1999; 96: 4592–4597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fournel M, Trachy-Bourget MC, Yan PT, Kalita A, Bonfils C, Beaulieu C et al. Sulfonamide anilides, a novel class of histone deacetylase inhibitors, are antiproliferative against human tumors. Cancer Res 2002; 62: 4325–4330.

    CAS  PubMed  Google Scholar 

  64. Prakash S, Foster BJ, Meyer M, Wozniak A, Heilbrun LK, Flaherty L et al. Chronic oral administration of CI-994: a phase 1 study. Invest New Drugs 2001; 19: 1–11.

    Article  CAS  PubMed  Google Scholar 

  65. Yoshida M, Kijima M, Akita M, Beppu T . Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem 1990; 265: 17174–17179.

    CAS  PubMed  Google Scholar 

  66. Kim YB, Lee KH, Sugita K, Yoshida M, Horinouchi S . Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. Oncogene 1999; 18: 2461–2470.

    Article  CAS  PubMed  Google Scholar 

  67. Almenara J, Rosato R, Grant S . Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA). Leukemia 2002; 16: 1331–1343.

    Article  CAS  PubMed  Google Scholar 

  68. Kelly WK, Richon VM, O’Connor O, Curley T, MacGregor-Curtelli B, Tong W et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clin Cancer Res 2003; 9: 3578–3588.

    CAS  PubMed  Google Scholar 

  69. Furumai R, Komatsu Y, Nishino N, Khochbin S, Yoshida M, Horinouchi S . Potent histone deacetylase inhibitors built from trichostatin A and cyclic tetrapeptide antibiotics including trapoxin. Proc Natl Acad Sci USA 2001; 98: 87–92.

    Article  CAS  PubMed  Google Scholar 

  70. Komatsu Y, Tomizaki KY, Tsukamoto M, Kato T, Nishino N, Sato S et al. Cyclic hydroxamic-acid-containing peptide 31, a potent synthetic histone deacetylase inhibitor with antitumor activity. Cancer Res 2001; 61: 4459–4466.

    CAS  PubMed  Google Scholar 

  71. DiGiuseppe JA, Weng LJ, Yu KH, Fu S, Kastan MB, Samid D et al. Phenylbutyrate-induced G1 arrest and apoptosis in myeloid leukemia cells: structure–function analysis. Leukemia 1999; 13: 1243–1253.

    Article  CAS  PubMed  Google Scholar 

  72. Yu KH, Weng LJ, Fu S, Piantadosi S, Gore SD . Augmentation of phenylbutyrate-induced differentiation of myeloid leukemia cells using all-trans retinoic acid. Leukemia 1999; 13: 1258–1265.

    Article  CAS  PubMed  Google Scholar 

  73. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 2002; 346: 645–652.

    Article  CAS  PubMed  Google Scholar 

  74. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood 2002; 99: 3530–3539.

    Article  CAS  PubMed  Google Scholar 

  75. Yu C, Rahmani M, Conrad D, Subler M, Dent P, Grant S . The proteasome inhibitor bortezomib interacts synergistically with histone deacetylase inhibitors to induce apoptosis in Bcr/Abl+ cells sensitive and resistant to STI571. Blood 2003; 102: 3765–3774.

    Article  CAS  PubMed  Google Scholar 

  76. Weisberg E, Griffin JD . Mechanism of resistance to the ABL tyrosine kinase inhibitor STI571 in BCR/ABL-transformed hematopoietic cell lines. Blood 2000; 95: 3498–3505.

    CAS  PubMed  Google Scholar 

  77. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Hideshima T et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc Natl Acad Sci USA 2004; 101: 540–545.

    Article  CAS  PubMed  Google Scholar 

  78. Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 2002; 94: 504–513.

    Article  CAS  PubMed  Google Scholar 

  79. Cohen HY, Lavu S, Bitterman KJ, Hekking B, Imahiyerobo TA, Miller C et al. Acetylation of the C terminus of Ku70 by CBP and PCAF controls Bax-mediated apoptosis. Mol Cell 2004; 13: 627–638.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Dana-Farber Cancer Institute, Boston, MA and supported by the National Institutes of Health grants ROI50947 and POI78378, and the Doris Duke Distinguished Clinical Research Scientist Award (KCA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Catley.

Additional information

Supplementary Information

Materials and methods for cell culture, cell cycle, cytotoxicity assays and Western blot are listed in Supplementary Information on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisberg, E., Catley, L., Kujawa, J. et al. Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia 18, 1951–1963 (2004). https://doi.org/10.1038/sj.leu.2403519

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403519

Keywords

This article is cited by

Search

Quick links