Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pulmonary inflammation and bronchopulmonary dysplasia

Abstract

Various pre- and postnatal risk factors, which act additively or synergistically induce an injurious inflammatory response in the airways and the pulmonary interstitium of preterm infants with bronchopulmonary dysplasia. This inflammatory response is characterized by an accumulation of neutrophils and macrophages as well as an arsenal of proinflammatory mediators that affect the endothelium and alveolar-capillary integrity. Besides proinflammatory cytokines and toxic oxygen radicals, lipid mediators as well as potent proteases may be responsible for acute lung injury. There is increasing evidence that an imbalance between pro- and anti-inflammatory factors, which should protect the alveoli and lung tissue, are key features in the pathogenesis of bronchopulmonary dysplasia. In addition, a subnormal generation of growth factors may affect alveolarization and vascular development in preterm infants with bronchopulmonary dysplasia. In this condensed review article, the current concepts on the possible role of inflammation in the evolution of bronchopulmonary dysplasia will be summarized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Speer CP, Groneck P . Inflammatory mediators in neonatal lung disease. In: Bland R, Coalson J (eds). Chronic Lung Disease in Early Infancy. Marcel Dekker: New York, Basel, 2000, pp 147–157.

    Google Scholar 

  2. Speer CP . New insights into the pathogenesis of pulmonary inflammation in preterm infants. Biol Neonate 2001; 79: 205–209.

    Article  CAS  PubMed  Google Scholar 

  3. Speer CP . Inflammation and bronchopulmonary dysplasia. Semin Neonatol 2003; 8: 29–38.

    Article  PubMed  Google Scholar 

  4. Jobe AH, Bancalari E . Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 163: 1723–1729.

    Article  CAS  PubMed  Google Scholar 

  5. Bland RD . Neonatal chronic lung disease in the post-surfactant era. Biol Neonate 2005; 88: 181–191.

    Article  PubMed  Google Scholar 

  6. Merritt TA, Cochrane CG, Holcomb K, Bohl B, Hallman M, Strayer D et al. Elastase and α1-proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome. J Clin Invest 1983; 72: 656–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arnon S, Grigg J, Silverman M . Pulmonary inflammatory cells in ventilated preterm infants: effect of surfactant treatment. Arch Dis Child 1993; 69: 44–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Groneck P, Goetze-Speer B, Oppermann M, Eiffert H, Speer CP . Association of pulmonary inflammation and increased microvascular permeability during the development of bronchopulmonary dysplasia: a sequential analysis of inflammatory mediators in respiratory fluids of high risk preterm infants. Pediatrics 1994; 93: 712–718.

    CAS  PubMed  Google Scholar 

  9. Kotecha S, Chan B, Azam N, Silverman M, Shaw RJ . Increase in interleukin-8 and soluble intercellular adhesion molecule-1 in bronchoalveolar lavage of premature infants with chronic lung disease. Arch Dis Child 1995; 72: F90–F96.

    Article  CAS  Google Scholar 

  10. Ogden BE, Murphy SA, Saunders GC, Pathak D, Johnson JD . Neonatal lung neutrophils and elastase/proteinase inhibitor imbalance. Am Rev of Respir Dis 1984; 130: 817–821.

    CAS  Google Scholar 

  11. Carlton DP, Albertine KH, Cho SC, Lont M, Bland RD . Role of neutrophils in lung vascular injury and edema after premature birth in lambs. J Appl Physiol 1997; 83: 1307–1317.

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira PJ, Bunch TJ, Albertine KH, Carlton DP . Circulating neutrophil concentration and respiratory distress in premature infants. J Pediatr 2000; 136: 466–472.

    Article  CAS  PubMed  Google Scholar 

  13. Jaarsma A, Braaksma MA, Geven WB, van Oeveren W, Oetomo SB . Activation of the inflammatory reaction within minutes after birth in ventilated preterm lambs with neonatal respiratory distress syndrome. Biol Neonate 2004; 86: 1–5.

    Article  CAS  PubMed  Google Scholar 

  14. Kotecha S, Mildner RJ, Prince LR, Vyas JR, Currie AE, Lawson RA et al. The role of neutrophil apoptosis in the resolution of acute lung injury in newborn infants. Thorax 2003; 58: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nazeeh H, Vasquez P, Pham P, Heck DE, Laskin JD, Laskin DL et al. Mechanisms underlying reduced apoptosis in neonatal neutrophils. Pediatr Res 2005; 57: 56–62.

    Article  Google Scholar 

  16. Koenig JM, Stegner JJ, Schmeck AC, Saxonhouse MA, Kenigsberg LE . Neonatal neutrophils with prolonged survival exhibit enhanced inflammatory and cytotoxic responsiveness. Pediatr Res 2005; 57: 424–429.

    Article  CAS  PubMed  Google Scholar 

  17. Little S, Dean T, Bevin S, Hall M, Ashton M, Church M et al. Role of elevated plasma soluble ICAM-1 and bronchial lavage fluid IL-8 levels as markers of chronic lung disease in premature infants. Thorax 1995; 50: 1073–1079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kotecha S, Silverman M, Shaw RJ, Klein M . Soluble L-selectin concentrations in bronchoalveolar fluid obtained from infants who develop chronic lung disease. Arch Dis Child 1998; 78: F143–F147.

    Article  CAS  Google Scholar 

  19. Ramsay PL, O'Brian Smith E, Hegemier S, Welty SE . Early clinical markers for the development of bronchopulmonary dysplasia: soluble E-Selectin and ICAM-1. Pediatrics 1998; 102: 927–932.

    Article  CAS  PubMed  Google Scholar 

  20. D'Alquen D, Kramer BW, Seidenspinner S, Marx A, Berg D, Groneck P et al. Activation of umbilical cord endothelial cells and fetal inflammatory response in preterm infants with chorioamnionitis and funisitis. Pediatr Res 2005; 57: 263–269.

    Article  PubMed  Google Scholar 

  21. Clement A, Chadelat K, Sardet A, Grimfeld A, Tournier G . Alveolar macrophage status in bronchopulmonary dysplasia. Pediatr Res 1988; 23: 470–473.

    Article  CAS  PubMed  Google Scholar 

  22. Rindfleisch MS, Hasday JD, Taciak V, Broderick K, Viscardi RM . Potential role of interleukin-1 in the development of bronchopulmonary dysplasia. J Interferon Cytokine Res 1996; 16: 365–373.

    Article  CAS  PubMed  Google Scholar 

  23. Yi M, Jankov RP, Belcastro R, Humes D, Copland I, Shek S et al. Opposing effect of 60% oxygen and neutrophil influx on alveologenesis in the neonatal rat. Am J Respir Crit Care Med 2004; 170: 1188–1196.

    Article  PubMed  Google Scholar 

  24. Kotecha S . Pathophysiology of chronic lung disease or prematurity. Biol Neonate 2000; 78: 233–268.

    Article  Google Scholar 

  25. Jobe AH, Ikegami M . Mechanisms initiating lung injury in the preterm. Early Hum Dev 1998; 53: 81–94.

    Article  CAS  PubMed  Google Scholar 

  26. Jones CA, Cayabyab RG, Kwong KY, Stotts C, Wong B, Hamdan H et al. Undetectable interleukin (IL)-10 and persistent IL-8 expression early in hyaline membrane disease: a possible developmental basis for the predisposition to chronic lung inflammation in preterm newborns. Pediatr Res 1996; 39: 966–975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jónsson B, Tullus K, Brauner A, Lu Y, Noack G . Early increase of TNFα and IL-6 in tracheobronchial aspirate fluid indicator of subsequent chronic lung disease in preterm infants. Arch Dis Child 1997; 77: F198–F201.

    Article  Google Scholar 

  28. Groneck P, Schmale J, Soditt V, Stützer J, Goetze-Speer B, Speer CP . Bronchoalveolar inflammation following airway infection in preterm infants with chronic lung disease. Pediatr Pulmonol 2001; 31: 331–338.

    Article  CAS  PubMed  Google Scholar 

  29. Kotecha S, Wilson L, Wangoo A, Silverman M, Shaw RJ . Increase in interleukin (IL)-1α and IL-6 in bronchoalveolar lavage fluid obtained from infants with chronic lung disease of prematurity. Pediatr Res 1996; 40: 250–256.

    Article  CAS  PubMed  Google Scholar 

  30. LoMonaco MB, Barber CM, Sinkin RA . Differential cytokine mRNA expression by neonatal pulmonary cells. Pediatr Res 1996; 39: 248–251.

    Article  CAS  PubMed  Google Scholar 

  31. Murch SH, Costeloe K, Klein NJ, Rees H, McIntosh N, Keeling JW et al. Mucosal tumor necrosis factor-α production and extensive disruption of sulfated glycosaminoglycans begin within hours of birth in neonatal respiratory distress syndrome. Pediatr Res 1996; 40: 484–489.

    Article  CAS  PubMed  Google Scholar 

  32. Schmidt B, Cao L, Mackensen-Haen S, Kendziorra H, Klingel K, Speer CP . Chorioamnionitis and inflammation of the fetal lung. Am J Obstet Gynecol 2001; 194: 173–177.

    Article  Google Scholar 

  33. Kakkera DK, Siddiq MM, Parton LA . Interleukin-1 balance in the lungs of preterm infants who develop bronchopulmonary dysplasia. Biol Neonate 2004; 87: 82–90.

    Article  PubMed  Google Scholar 

  34. Baier RJ, Loggins J, Kruger TE . Interleukin-4 and 13 concentrations in infants at risk to develop bronchopulmonary dysplasia. BMC Pediatr 2003; 3: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jonsson B, Li YH, Noack G, Brauner A, Tullus K . Down regulatory cytokines in tracheobronchial aspirate fluid from infants with chronic lung disease of prematurity. Acta Paediatr 2000; 89: 1375–1380.

    Article  CAS  PubMed  Google Scholar 

  36. Kwong KYC, Jones CA, Cayabyab R, Lecart C, Khuu N, Rhandhawa I et al. The effects of IL-10 on proinflammatory cytokine expression (IL-1β and IL-8) in hyaline membrane disease (HMD). Clin Immunol Immunopathol 1998; 88: 105–113.

    Article  CAS  PubMed  Google Scholar 

  37. Keane MP, Strieter RM . The importance of balanced pro-inflammatory and anti- inflammatory mechanisms in diffuse lung disease. Respir Res 2002; 3: 5.

    Article  PubMed  Google Scholar 

  38. Wagenaar GT, ter Horst SA, van Gastelen MA, Leijser LM, Mauad T, van der Velden PA et al. Gene expression profile and histopathology of experimental bronchopulmonary dysplasia induced by prolonged oxidative stress. Free Radic Biol Med 2004; 36: 782–801.

    Article  CAS  PubMed  Google Scholar 

  39. Rozycki HJ, Comber PG, Huff TF . Cytokines and oxygen radicals after hyperoxia in preterm and term alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 2002; 282: L1222–L1228.

    Article  CAS  PubMed  Google Scholar 

  40. Naik A, Kallapur S, Bachurski CJ, Michna J, Jobe AH, Ikegami M . Effects of different styles of ventilation on cytokine expression in preterm lamb lung. Pediatr Res 2000; 47: 370A.

    Google Scholar 

  41. Muscedere JG, Mullen JBM, Gan K, Slutsky AS . Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 1994; 149: 1327–1334.

    Article  CAS  PubMed  Google Scholar 

  42. Dreyfuss D, Saumon G . Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 1998; 157: 294–323.

    Article  CAS  PubMed  Google Scholar 

  43. Albertine KH, Jones GP, Starcher BC, Bohnsack JF, Davis PL, Cho SC et al. Chronic lung injury in preterm lambs. Disordered respiratory tract development. Am J Respir Crit Care Med 1999; 159: 945–958.

    Article  CAS  PubMed  Google Scholar 

  44. Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS . Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99: 944–952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thome U, Goetze-Speer B, Speer CP, Pohlandt F . Comparison of pulmonary inflammatory mediators in preterm infants treated with intermittent positive pressure ventilation or high frequency oscillatory ventilation. Pediatr Res 1998; 44: 330–337.

    Article  CAS  PubMed  Google Scholar 

  46. May M, Ströbel P, Seidenspinner S, Marx A, Speer CP . Apoptosis and proliferation in lungs of stillborn fetuses and ventilated preterm infants with respiratory distress syndrome. Eur Respir J 2004; 23: 113–121.

    Article  CAS  PubMed  Google Scholar 

  47. Ricard JD, Dreyfuss D, Saumon G . Production of inflammatory cytokines in ventilator-induced lung injury: a reappraisal. Am J Respir Crit Care Med 2001; 163: 1176–1180.

    Article  CAS  PubMed  Google Scholar 

  48. Tsuchida S, Engelberts D, Roth M, McKerlie C, Post M, Kavanagh BP . Continuous positive airway pressure causes lung injury in a rat model of sepsis. Am J Physiol Lung Cell Mol Physiol 2005; 289: L554–L564.

    Article  CAS  PubMed  Google Scholar 

  49. May M, Marx A, Seidenspinner S, Speer CP . Apoptosis and proliferation in lungs of human fetuses exposed to chorioamnionitis. Histopathology 2004; 45: 283–290.

    Article  CAS  PubMed  Google Scholar 

  50. Yoon BH, Romero R, Jun JK, Park KH, Park JD, Ghezzi F et al. Amniotic fluid cytokines (interleukin-6, tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol 1997; 177: 825–830.

    Article  CAS  PubMed  Google Scholar 

  51. Gomez R, Romero R, Ghezzi F, Yoon BH, Mazor M, Berry SM . The fetal inflammatory response syndrome. Am J Obstet Gynecol 1998; 179: 194–202.

    Article  CAS  PubMed  Google Scholar 

  52. Van Marter LJ, Dammann O, Allred EN, Leviton A, Pagano M, Moore M et al. Chorioamnionitis, mechanical ventilation, and postnatal sepsis as modulators of chronic lung disease in preterm infants. J Pediatr 2002; 140: 171–176.

    Article  PubMed  Google Scholar 

  53. Groneck P, Götze-Speer B, Speer CP . Inflammatory bronchopulmonary response of preterm infants with microbial colonisation of the airways at birth. Arch Dis Child 1996; 74: F51–F55.

    Article  CAS  Google Scholar 

  54. Cordero L, Ayers LW, Davis K . Neonatal airway colonization with gram-negative bacilli: association with severity of bronchopulmonary dysplasia. Pediatr Infect Dis J 1997; 16: 18–23.

    Article  CAS  PubMed  Google Scholar 

  55. Rojas MA, Gonzalez A, Bancalari E, Claure N, Poole C, Silva-Neto G . Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J Pediatr 1995; 126: 605–610.

    Article  CAS  PubMed  Google Scholar 

  56. Gonzales A, Sosenko IRS, Chandar J, Hummler H, Claure N, Bancalari E . Influence of infection on patent ductus arteriosus and chronic lung disease in premature infants weighing 1000 grams or less. J Pediatr 1996; 128: 470–478.

    Article  Google Scholar 

  57. Bancalari E, Claure N, Gonzales A . Patent ductus arteriosus and respiratory outcome in premaure infants. Biol Neonate 2005; 88: 192–201.

    Article  PubMed  Google Scholar 

  58. Wang EEL, Matlow AG, Ohlsson A, Nelson SC . Ureaplasma urealyticum infections in the perinatal period. Clin Perinatol 1997; 24: 91–105.

    Article  CAS  PubMed  Google Scholar 

  59. Yoder BA, Coalson JJ, Winter VT, Siler-Khodr T, Duffy LB, Cassell GH . Effects of antenatal colonization with ureaplasma urealyticum on pulmonary disease in the immature baboon. Pediatr Res 2003; 54: 797–807.

    Article  PubMed  Google Scholar 

  60. Kotecha S, Hodge R, Schaber JA, Miralles R, Silverman M, Grant WD . Pulmonary Ureaplasma urealyticum is associated with the development of acute lung inflammation and chronic lung disease in preterm infants. Pediatr Res 2004; 55: 61–68.

    Article  PubMed  Google Scholar 

  61. Merritt TA, Stuard ID, Puccia J, Edwards DK, Finkelstein J, Shapiro DL . Newborn tracheal aspirate cytology: classification during respiratory distress syndrome and bronchopulmonary dysplasia. J Pediatr 1986; 98: 949–956.

    Article  Google Scholar 

  62. Speer CP, Ruess D, Harms K, Herting E, Gefeller O . Neutrophil elastase and acute pulmonary damage in neonates with severe respiratory distress syndrome. Pediatrics 1993; 91: 794–799.

    CAS  PubMed  Google Scholar 

  63. Gerber CE, Bruchelt G, Stegmann H, Schweinsberg F, Speer CP . Presence of bleomycin-detectable free iron in the alveolar system of preterm infants. Biochem Biophys Res Commun 1999; 257: 218–222.

    Article  CAS  PubMed  Google Scholar 

  64. Speer CP, Pabst M, Hedegaard HB, Rest RF, Johnston RB . Enhanced release of oxygen metabolites by monocyte-derived macrophages exposed to proteolytic enzymes: activity of neutrophil elastase and cathepsin G. J Immunol 1984; 133: 2151–2156.

    CAS  PubMed  Google Scholar 

  65. Saugstad OD . Oxidative stress in the newborn – a 30 years perspective. Biol Neonate 2005; 88: 228–236.

    Article  CAS  PubMed  Google Scholar 

  66. Schock BC, Sweet DG, Ennis M, Warner JA, Young IS, Halliday HL . Oxidative stress and increased type-IV collagenase levels in bronchoalveolar lavage fluid from newborn babies. Pediatr Res 2001; 50: 29–33.

    Article  CAS  PubMed  Google Scholar 

  67. Sweet DG, McMahon KJ, Curley AE, O'Connor CM, Halliday HL . Type I collagenases in bronchoalveolar lavage fluid from preterm babies at risk of developing chronic lung disease. Arch Dis Child Fetal Neonatal Ed 2001; 84: F168–F171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cederquist K, Sorsa T, Tervahartiala T, Maisi P, Reunanen K, Lassus P et al. Matrix metalloproteinases-2, -8, and -9 and TIMP-2 in tracheal aspirates from preterm infants with respiratory distress. Pediatrics 2001; 108: 686–692.

    Article  Google Scholar 

  69. Curley AE, Sweet DG, MacMahon KJ, O'Connor CM, Halliday HL . Chorioamnionitis increases matrix metalloproteinase-8 concentrations in bronchoalveolar lavage fluid from peterm babies. Arch Dis Child Fetal Neonatal Ed 2004; 89: F61–F64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cederqvist K, Haglund C, Heikkilä P, Hollenberg MD, Karikoski R, Andersson S . High expression of pulmonary proteinase-activated receptor 2 in acute and chronic lung injury in preterm infants. Pediatr Res 2005; 57: 831–836.

    Article  CAS  PubMed  Google Scholar 

  71. Jefferies AL, Coates G, O'Brodovich H . Pulmonary epithelial permeability in hyaline-membrane disease. N Engl J Med 1984; 311: 1075–1080.

    Article  CAS  PubMed  Google Scholar 

  72. Adams EW, Harrison MC, Counsell SJ, Allsop JM, Kennea NL, Hajnal JV et al. Increased lung water and tissue damage in bronchopulmonary dysplasia. J Pediatr 2004; 145: 503–507.

    Article  PubMed  Google Scholar 

  73. Grande JP . Role of transforming growth factor-β in tissue injury and repair. Proc Soc for Exp Biol Med 1997; 214: 27–40.

    Article  CAS  Google Scholar 

  74. Kramer BW, Jobe AH . The clever fetus: responding to inflammation to minimize lung injury. Biol Neonate 2005; 88: 202–207.

    Article  PubMed  Google Scholar 

  75. Bartram U, Speer CP . The role of transforming growth factor β in lung development and disease. Chest 2004; 125: 754–765.

    Article  PubMed  Google Scholar 

  76. Sime PJ, Marr RA, Gauldie D, Xing Z, Hewlett BR, Graham FL et al. Transfer of tumor necrosis factor-α to rat lung induces severe pulmonary inflammation and patchy interstitial fibrogenesis with induction of transforming growth factor-β1 and myofibroblasts. Am J Pathol 1998; 153: 825–832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kotecha S, Wangoo A, Silverman M, Shaw RJ . Increase in the concentration of transforming growth factor-β1 in bronchoalveolar lavage fluid before the development of chronic lung disease of prematurity. J Pediatr 1996; 128: 464–469.

    Article  CAS  PubMed  Google Scholar 

  78. Lecart C, Cayabyab R, Bockley S, Morrison J, Kwong KY, Warburton D et al. Bioactive transforming growth factor-β in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation. Biol Neonate 2000; 77: 217–223.

    Article  CAS  PubMed  Google Scholar 

  79. Jónsson B, Li Y-H, Noack G, Brauner A, Tullus K . Downregulatory cytokines in tracheobronchial aspirate fluid from infants with chronic lung disease of prematurity. Acta Paediatr 2000; 89: 1375–1380.

    Article  PubMed  Google Scholar 

  80. Danan C, Franco ML, Jarreau PH, Dassieu G, Chailley-Heu B, Bourbon J et al. High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 2002; 165: 1384–1387.

    Article  PubMed  Google Scholar 

  81. Lassus P, Heikkila P, Andersson LC, von Boguslawski K, Andersson S . Lower concentration of pulmonary hepatocyte growth factor is associated with more severe lung disease in preterm infants. J Pediatr 2003; 143: 199–202.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C P Speer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Speer, C. Pulmonary inflammation and bronchopulmonary dysplasia. J Perinatol 26 (Suppl 1), S57–S62 (2006). https://doi.org/10.1038/sj.jp.7211476

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jp.7211476

Keywords

This article is cited by

Search

Quick links