Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting mechanisms of hypertensive vascular disease with dual calcium channel and renin–angiotensin system blockade

Abstract

Patients with hypertension, particularly those with diabetes mellitus, are at heightened risk for cardiovascular and renal disease. Accumulated evidence indicates that the majority of hypertensive patients at high risk will require more than one antihypertensive agent to reach their blood pressure (BP) target. A reasonable strategy is to use agents with complementary mechanisms of action to enhance BP-lowering efficacy and prevent target organ damage. In experimental models, the combination of a calcium channel blocker (CCB) with an agent that blocks the renin–angiotensin system (RAS), an angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker, improves measures of endothelial function, inflammation, ventricular remodelling and renal function to a greater degree than these classes given as monotherapy. In clinical trials, calcium channel/RAS blockade combination therapy has been shown to provide greater BP reductions and improve renal function in patients with diabetic and nondiabetic renal disease earlier and to a greater extent than monotherapy. In addition, dual calcium channel/RAS blockade increases arterial compliance, arterial distensibility and flow-mediated vasodilation. Expanding upon extensive research on the benefits of calcium channel blockade and RAS blockade for the prevention of vascular events and preclinical and clinical trial evidence suggests added effects of combination therapy by targeting the underlying mechanisms of hypertensive vascular disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ong KL, Cheung BM, Man YB, Lau CP, Lam KS . Prevalence, awareness, treatment, and control of hypertension among United States adults 1999–2004. Hypertension 2007; 49: 69–75.

    Article  CAS  PubMed  Google Scholar 

  2. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL, et al., the National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206–1252.

    Article  CAS  PubMed  Google Scholar 

  3. Cushman WC, Ford CE, Cutler JA, Margolis KL, Davis BR, Grimm RH, et al., for the ALLHAT Collaborative Research Group. Success and predictors of blood pressure control in diverse North American settings: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). J Clin Hypertens (Greenwich) 2002; 4: 393–404.

    Article  Google Scholar 

  4. The ALLHAT Officers and Coordinators for the ALLHAT Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288: 2981–2997.

  5. American Diabetes Association. Hypertension management in adults with diabetes. Diabetes Care 2004; 27 (Suppl 1): S65–S67.

  6. Guidelines Committee. 2003 European Society of Hypertension–European Society of Cardiology guidelines for the management of arterial hypertension. J Hypertens 2003; 21: 1011–1053.

  7. Kshirsagar AV, Carpenter M, Bang H, Wyatt SB, Colindres RE . Blood pressure usually considered normal is associated with an elevated risk of cardiovascular disease. Am J Med 2006; 119: 133–141.

    Article  PubMed  Google Scholar 

  8. Giles TD . Assessment of global risk: a foundation for a new, better definition of hypertension. J Clin Hypertens (Greenwich) 2006; 8 (8 Suppl 2): 5–14.

    Article  Google Scholar 

  9. Staessen JA, Wang JG, Thijs L . Cardiovascular prevention and blood pressure reduction: a quantitative overview updated until 1 March 2003. J Hypertens 2003; 21: 1055–1076.

    Article  CAS  PubMed  Google Scholar 

  10. Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 2003; 362: 1527–1535.

  11. Blood Pressure Lowering Treatment Trialists’ Collaboration. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med 2005; 165: 1410–1419.

  12. Sever PS, Poulter NR, Elliott WJ, Jonsson MC, Black HR . Blood pressure reduction is not the only determinant of outcome. Circulation 2006; 113: 2754–2772.

    Article  PubMed  Google Scholar 

  13. Blood Pressure Lowering Treatment Trialists’ Collaboration. Blood pressure-dependent and independent effects of agents that inhibit the renin–angiotensin system. J Hypertens 2007; 25: 951–958.

  14. Verdecchia P, Reboldi G, Angeli F, Gattobigio R, Bentivoglio M, Thijs L et al. Angiotensin-converting enzyme inhibitors and calcium channel blockers for coronary heart disease and stroke prevention. Hypertension 2005; 46: 386–392.

    Article  CAS  PubMed  Google Scholar 

  15. Klingbeil AU, John S, Schneider MP, Jacobi J, Handrock R, Schmieder RE . Effect of AT1 receptor blockade on endothelial function in essential hypertension. Am J Hypertens 2003; 16: 123–128.

    Article  CAS  PubMed  Google Scholar 

  16. Jafar TH, Schmid CH, Landa M, Giatras I, Toto R, Remuzzi G, et al., for the ACE Inhibition in Progressive Renal Disease Study Group. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease: a meta-analysis of patient-level data. Ann Intern Med 2001; 135: 73–87.

    Article  CAS  PubMed  Google Scholar 

  17. Angeli F, Verdecchia P, Reboldi GP, Gattobigio R, Bentivoglio M, Staessen JA et al. Calcium channel blockade to prevent stroke in hypertension: a meta-analysis of 13 studies with 103,793 subjects. Am J Hypertens 2004; 17: 817–822.

    CAS  PubMed  Google Scholar 

  18. National Kidney Foundation. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic kidney disease. Am J Kidney Dis 2007; 49 (2 Suppl 2): S12–S154.

  19. Dzau VJ . Tissue angiotensin and pathobiology of vascular disease: a unifying hypothesis. Hypertension 2001; 37: 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  20. Schmieder RE, Hilgers KF, Schlaich MP, Schmidt BM . Renin–angiotensin system and cardiovascular risk. Lancet 2007; 369: 1208–1219.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou M-S, Schulman IH, Raij L . Nitric oxide, angiotensin II, and hypertension. Semin Nephrol 2004; 24: 366–378.

    Article  CAS  PubMed  Google Scholar 

  22. Fogari R, Preti P, Lazzari P, Corradi L, Zoppi A, Fogari E et al. Effect of benazepril amlodipine combination on fibrinolysis in hypertensive diabetic patients. Eur J Clin Pharmacol 2003; 59: 271–275.

    Article  CAS  PubMed  Google Scholar 

  23. Glasser SP . On arterial physiology, pathophysiology of vascular compliance, and cardiovascular disease. Heart Dis 2000; 2: 375–379.

    CAS  PubMed  Google Scholar 

  24. Taddei S, Virdis A, Ghiadoni L, Sudano I, Salvetti A . Effects of antihypertensive drugs on endothelial dysfunction: clinical implications. Drugs 2002; 62: 265–284.

    Article  CAS  PubMed  Google Scholar 

  25. Hornig B, Kohler C, Drexler H . Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans. Circulation 1997; 95: 1115–1118.

    Article  CAS  PubMed  Google Scholar 

  26. Mancini GBJ, Henry GC, Macaya C, O’Neill BJ, Pucillo AL, Carere RG et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease: the TREND (Trial on Reversing ENdothelial Dysfunction) study. Circulation 1996; 94: 258–265.

    Article  CAS  PubMed  Google Scholar 

  27. Higashi Y, Sasaki S, Nakagawa K, Ueda T, Yoshimizu A, Kurisu S et al. A comparison of angiotensin-converting enzyme inhibitors, calcium antagonists, beta-blockers and diuretic agents on reactive hyperemia in patients with essential hypertension: a multicenter study. J Am Coll Cardiol 2000; 35: 284–291.

    Article  CAS  PubMed  Google Scholar 

  28. Willemsen JM, Westerink JW, Dallinga-Thie GM, van Zonneveld AJ, Gaillard CA, Rabelink TJ et al. Angiotensin II type 1 receptor blockade improves hyperglycemia-induced endothelial dysfunction and reduces proinflammatory cytokine release from leukocytes. J Cardiovasc Pharmacol 2007; 49: 6–12.

    Article  CAS  PubMed  Google Scholar 

  29. Seeger H, Lippert C, Wallwiener D, Mueck AO . Valsartan and candesartan can inhibit deteriorating effects of angiotensin II on coronary endothelial function. J Renin Angiotensin Aldosterone Syst 2002; 20: 303–310.

    Google Scholar 

  30. Gossmann J, Burkhardt R, Harder S, Lenz T, Sedlmeyer A, Klinkhardt U et al. Effect of angiotensin II infusion with and without angiotensin II type 1 receptor blockade on nitric oxide metabolism and endothelin in human beings: a placebo-controlled study in healthy volunteers. Clin Pharmacol Ther 2000; 68: 501–509.

    Article  CAS  PubMed  Google Scholar 

  31. Kuno A, Miura T, Tsuchida A, Hasegawa T, Miki T, Nishino Y et al. Blockade of angiotensin II type 1 receptors suppressed free radical production and preserved coronary endothelial function in the rabbit heart after myocardial infarction. J Cardiovasc Pharmacol 2002; 39: 49–57.

    Article  CAS  PubMed  Google Scholar 

  32. Ghiadoni L, Magagna A, Versari D, Kardasz I, Huang Y, Taddei S et al. Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003; 41: 1281–1286.

    Article  CAS  PubMed  Google Scholar 

  33. Ceconi C, Fox KM, Remme WJ, Simoons ML, Bertrand M, Parrinello G, et al., for the EUROPA Investigators; PERTINENT Investigators and the Statistical Committee. ACE inhibition with perindopril and endothelial function: results of a substudy of the EUROPA study: PERTINENT. Cardiovasc Res 2007; 73: 237–246.

    Article  CAS  PubMed  Google Scholar 

  34. Dielis AW, Smid M, Spronk HM, Houben AJ, Hamulyak K, Kroon AA et al. Changes in fibrinolytic activity after angiotensin II receptor blockade in therapy-resistant hypertensive patients. J Thromb Haemost 2007 E-pub 2007, April 9.

  35. Oubina MP, de las Heras N, Vazquez-Perez S, Cediel E, Sanz-Rosa D, Ruilope LM et al. Valsartan improves fibrinolytic balance in atherosclerotic rabbits. J Hypertens 2002; 20: 303–310.

    Article  CAS  PubMed  Google Scholar 

  36. Brown NJ, Agirbasli M, Vaughan DE . Comparative effect of angiotensin-converting enzyme inhibition and angiotensin II type 1 receptor antagonism on plasma fibrinolytic balance in humans. Hypertension 1999; 34: 285–290.

    Article  CAS  PubMed  Google Scholar 

  37. Li QZ, Deng Q, Li JQ, Yi GH, Zhao SP . Valsartan reduces interleukin-1beta secretion by peripheral blood mononuclear cells in patients with essential hypertension. Clin Chim Acta 2005; 355: 131–136.

    Article  CAS  PubMed  Google Scholar 

  38. Sironi L, Gelosa P, Guerrini U, Banfi C, Crippa V, Brioschi M et al. Anti-inflammatory effects of AT1 receptor blockade provide end-organ protection in stroke-prone rats independently from blood pressure fall. J Pharmacol Exp Ther 2004; 311: 989–995.

    Article  CAS  PubMed  Google Scholar 

  39. Dandona P, Kumar V, Aljada A, Ghanim H, Syed T, Hofmayer D et al. Angiotensin II receptor blocker valsartan suppresses reactive oxygen species generation in leukocytes, nuclear factor-kappa B, in mononuclear cells of normal subjects: evidence of an anti-inflammatory action. J Clin Endocrinol Metab 2003; 88: 4496–4501.

    Article  CAS  PubMed  Google Scholar 

  40. Schmeisser A, Soehnlein O, Illmer T, Lorenz HM, Eskafi S, Roerick O et al. ACE inhibition lowers angiotensin II-induced chemokine expression by reduction of NF-kappaB activity and AT1 receptor expression. Biochem Biophys Res Commun 2004; 325: 532–540.

    Article  CAS  PubMed  Google Scholar 

  41. Lopez-Farre A, Sanchez de Miguel L, Monton M, Jimenez A, Lopez-Bloya A, Gomez J et al. Angiotensin II AT(1) receptor antagonists and platelet activation. Nephrol Dial Transplant 2001; 16 (Suppl 1): 45–49.

    Article  CAS  PubMed  Google Scholar 

  42. Kalinowski L, Matys T, Chabielska E, Buczko W, Malinski T . Angiotensin II AT1 receptor antagonists inhibit platelet adhesion and aggregation by nitric oxide release. Hypertension 2002; 40: 521–527.

    Article  CAS  PubMed  Google Scholar 

  43. Ogawa S, Mori T, Nako K, Kato T, Takeuchi K, Ito S . Angiotensin II type 1 receptor blockers reduce urinary oxidative stress markers in hypertensive diabetic nephropathy. Hypertenison 2006; 47: 699–705.

    Article  CAS  Google Scholar 

  44. Leiter LA, Lewanczuk RZ . Of the renin–angiotensin system and reactive oxygen species: type 2 diabetes and angiotensin II inhibition. Am J Hypertens 2005; 18: 121–128.

    Article  CAS  PubMed  Google Scholar 

  45. The Heart Outcomes Prevention Evaluation Study Investigators. Effects of an angiotensin-converting enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N Engl J Med 2000; 342: 145–153.

  46. Hansson L, Lindholm LH, Ekbom T, Dahlöf B, Lanke J, Schersten B, et al., for the STOP-Hypertension-2 Study Group. Randomised trial of old and new antihypertensive drugs in elderly patients: cardiovascular mortality and morbidity in the Swedish Trial in Old Patients with Hypertension-2 study. Lancet 1999; 354: 1751–1756.

    Article  CAS  PubMed  Google Scholar 

  47. The EUropean trial on Reduction Of cardiac events with Perindopril in patients with stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 2003; 362: 782–788.

  48. Dahlöf B, Devereux RB, Kjeldsen S, Julius S, Beevers G, de Faire U, et al., for the LIFE Study Group. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet 2002; 359: 995–1003.

    Article  PubMed  Google Scholar 

  49. Schrader J, Luders S, Kulschewski A, Hammersen F, Plate K, Berger J, et al., for the MOSES Study Group. Morbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention: principal results of a prospective randomized controlled study (MOSES). Stroke 2005; 36: 1218–1226.

    Article  CAS  PubMed  Google Scholar 

  50. Cohn JN, Tognoni G . A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001; 345: 1667–1675.

    Article  CAS  PubMed  Google Scholar 

  51. Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJ, Michelson EL, et al., CHARM Investigators and Committees. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 2003; 362: 759–766.

    Article  CAS  PubMed  Google Scholar 

  52. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD . The effect of angiotensin-converting enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–1462.

    Article  CAS  PubMed  Google Scholar 

  53. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, et al., for the Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345: 851–860.

    Article  CAS  PubMed  Google Scholar 

  54. Parving H-H, Lehnert H, Bröchner-Mortensen J, Gomis R, Andersen S, Arner P, for the Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 2001; 345: 870–878.

    Article  CAS  PubMed  Google Scholar 

  55. Brenner BM, Cooper ME, de Zeeuw D, Keane WF, Mitch WE, Parving H-H, et al., for the RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345: 861–869.

    Article  CAS  PubMed  Google Scholar 

  56. Viberti G, Wheeldon NM, for the MicroAlbuminuria Reduction with VALsartan (MARVAL) Study Investigators. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus: a blood pressure-independent effect. Circulation 2002; 106: 672–678.

    Article  CAS  PubMed  Google Scholar 

  57. Ravid M, Lang R, Rachmani R, Lishner M . Long-term renoprotective effect of angiotensin converting enzyme inhibition in non-insulin-dependent diabetes mellitus: a 7-year follow-up study. Arch Intern Med 1996; 156: 286–289.

    Article  CAS  PubMed  Google Scholar 

  58. Siragy HM, Xue C, Webb RL . Beneficial effects of combined benazepril–amlodipine on cardiac nitric oxide, cGMP, and TNF-α production after cardiac ischemia. J Cardiovasc Pharmacol 2006; 47: 636–642.

    Article  CAS  PubMed  Google Scholar 

  59. Eickelberg O, Roth M, Mussmann R, Rudiger JJ, Tamm M, Perruchoud AP et al. Calcium channel blockers activate the interleukin-6 gene via the transcription factors NF-IL6 and NF-kappaB in primary human vascular smooth muscle cells. Circulation 1999; 99: 2276–2282.

    Article  CAS  PubMed  Google Scholar 

  60. Mason RP . A rationale for combination therapy in risk factor management: a mechanistic perspective. Am J Med 2005; 118: 54S–61S.

    Article  CAS  Google Scholar 

  61. Mason RP . Atheroprotective effects of long-acting dihydropyridine-type calcium channel blockers: evidence from clinical trials and basic scientific research. Cerebrovasc Dis 2003; 16 (Suppl 3): 11–17.

    Article  PubMed  CAS  Google Scholar 

  62. Mason RP, Marche P, Hintze TH . Novel vascular biology of third-generation L-type calcium channel antagonists: ancillary actions of amlodipine. Arterioscler Thromb Vasc Biol 2003; 23: 2155–2163.

    Article  CAS  PubMed  Google Scholar 

  63. Saunders E, Weir MR, Kong BW, Hollifield J, Gray J, Vertes V et al. A comparison of the efficacy and safety of a beta-blocker, a calcium channel blocker, and a converting enzyme inhibitor in hypertensive blacks. Arch Intern Med 1990; 150: 1707–1713.

    Article  CAS  PubMed  Google Scholar 

  64. Weir MR, Chrysant SG, McCarron DA, Canossa-Terris M, Cohen JD, Gunter PA et al. Influence of race and dietary salt on the antihypertensive efficacy of an angiotensin-converting enzyme inhibitor or a calcium channel antagonist in salt-sensitive hypertensives. Hypertension 1998; 31: 1088–1096.

    Article  CAS  PubMed  Google Scholar 

  65. Houston MC, Weir M, Gray J, Ginsberg D, Szeto C, Kaihlenen PM et al. The effects of nonsteroidal anti-inflammatory drugs on blood pressures of patients with hypertension controlled by verapamil. Arch Intern Med 1995; 155: 1049–1054.

    Article  CAS  PubMed  Google Scholar 

  66. Pitt B, Byington RP, Furberg CD, Hunninghake DB, Mancini GB, Miller ME, et al., for the PREVENT Investigators. Effect of amlodipine on the progression of atherosclerosis and the occurrence of clinical events. Circulation 2000; 102: 1503–1510.

    Article  CAS  PubMed  Google Scholar 

  67. Nissen SE, Tuzcu EM, Libby P, Thompson PD, Ghali M, Garza D, et al., for the CAMELOT Investigators. Effect of antihypertensive agents on cardiovascular events in patients with coronary disease and normal blood pressure: the CAMELOT study: a randomized controlled trial. JAMA 2004; 292: 2217–2225.

    Article  CAS  PubMed  Google Scholar 

  68. Neutel JM, Smith DH, Weber MA, Schofield L, Purkayastha D, Gatlin M . Efficacy of combination therapy for systolic blood pressure in patients with severe systolic hypertension: the Systolic Evaluation of Lotrel Efficacy and Comparative Therapies (SELECT) study. J Clin Hypertens (Greenwich) 2005; 7: 641–646.

    Article  CAS  Google Scholar 

  69. Neutel JM, Smith DH, Weber MA, Schofield L, Purkayastha D, Gatlin M . Efficacy of combination therapy with amlodipine besylate/benazepril hydrochloride for lowering systolic blood pressure in stage 2 hypertension. Am J Geriatr Cardiol 2006; 15: 142–150.

    Article  PubMed  Google Scholar 

  70. Chrysant SG, Bakris GL . Amlodipine/benazepril combination therapy for hypertensive patients nonresponsive to benazepril monotherapy. Am J Hypertens 2004; 17: 590–596.

    Article  CAS  PubMed  Google Scholar 

  71. Jamerson KA, Nwose O, Jean-Louis L, Schofield L, Purkayastha D, Baron M . Initial angiotensin-converting enzyme inhibitor/calcium channel blocker combination therapy achieves superior blood pressure control compared with calcium channel blocker monotherapy in patients with stage 2 hypertension. Am J Hypertens 2004; 17: 495–501.

    Article  CAS  PubMed  Google Scholar 

  72. Bakris GL, Weir MR, Study of Hypertension and the Efficacy of Lotrel in Diabetes (SHIELD) Investigators. Achieving goal blood pressure in patients with type 2 diabetes: conventional versus fixed-dose combination approaches. J Clin Hypertens (Greenwich) 2003; 5: 202–209.

    Article  CAS  Google Scholar 

  73. Philipp T, Smith TR, Vaisse B, Bakris GL, Wernsing M, Yen J et al. Two multicenter, 8-week, randomized, double-blind, placebo-controlled, parallel-group studies evaluating the efficacy and tolerability of amlodipine and valsartan in combination and as monotherapy in adult patients with mild to moderate essential hypertension. Clin Ther. Online publication April 2, 2007. DOI: 10.1016/j.clinthera.2007.03.018.

  74. Tedesco MA, Natale F, Calabro R . Effects of monotherapy and combination therapy on blood pressure control and target organ damage: a randomized prospective intervention study in a large population of hypertensive patients. J Clin Hypertens (Greenwich) 2006; 8: 634–641.

    Article  CAS  Google Scholar 

  75. Stergiou GS, Makris T, Papavasiliou M, Efstathiou S, Manolis A . Comparison of antihypertensive effects of an angiotensin-converting enzyme inhibitor, a calcium antagonist and a diuretic in patients with hypertension not controlled by angiotensin receptor blocker monotherapy. J Hypertens 2005; 23: 883–889.

    Article  CAS  PubMed  Google Scholar 

  76. Fogari R, Zoppi A, Derosa G, Mugellini A, Lazzari P, Rinaldi A et al. Effect of valsartan addition to amlodipine on ankle oedema and subcutaneous tissue pressure in hypertensive patients. J Hum Hypertens 2007; 21: 220–224.

    Article  CAS  PubMed  Google Scholar 

  77. Jamerson KA, Bakris GL, Wun C-C, Dahlöf B, Lefkowitz M, Manfreda S et al. Rationale and design of the Avoiding Cardiovascular events through COMbination therapy in Patients Living with Systolic Hypertension (ACCOMPLISH) trial. Am J Hypertens 2004; 17: 793–801.

    CAS  PubMed  Google Scholar 

  78. Pepine CJ, Handberg EM, Cooper-DeHoff RM, Marks RG, Kowey P, Messerli FH, et al., for the INVEST Investigators. A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease: the International Verapamil–Trandolapril Study (INVEST): a randomized controlled trial. JAMA 2003; 290: 2805–2816.

    Article  CAS  PubMed  Google Scholar 

  79. Dahlöf B, Sever PS, Poulter NR, Wedel H, Beevers DG, Caulfield M, et al., for the ASCOT investigators. Prevention of cardiovascular events with an antihypertensive regimen of amlodipine adding perindopril as required versus atenolol adding bendroflumethiazide as required, in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA): a multicentre randomised controlled trial. Lancet 2005; 366: 895–906.

    Article  PubMed  CAS  Google Scholar 

  80. Poulter NR, Wedel H, Dahlöf B, Sever PS, Beevers DG, Caulfield M, et al., for the ASCOT investigators. Role of blood pressure and other variables in the differential cardiovascular event rates noted in the Anglo-Scandinavian Cardiac Outcomes Trial-Blood Pressure Lowering Arm (ASCOT-BPLA). Lancet 2005; 366: 907–913.

    Article  CAS  PubMed  Google Scholar 

  81. Bakris GL, Toto RD, McCullough PA . Rationale and design of a study comparing two fixed-dose combination regimens to reduce albuminuria in patients with type II diabetes and hypertension. J Hum Hypertens 2005; 19: 139–144.

    Article  CAS  PubMed  Google Scholar 

  82. Dahlöf B, Mochizuki S . JIKEI Heart Study: a morbidity–mortality study with valsartan in a Japanese population with hypertension and other cardiovascular disease manifestations. Presented at the annual meeting of the European Society of Cardiology-World Congress of Cardiology, September 2–6, 2006, Barcelona, Spain.

  83. Zhang X-P, Xu X, Nasjletti A, Hintze TH . Amlodipine enhances NO production induced by an ACE inhibitor through a kinin-mediated mechanism in canine coronary microvessels. J Cardiovasc Pharmacol 2000; 35: 195–202.

    Article  CAS  PubMed  Google Scholar 

  84. Mital S, Loke KE, Slater JP, Addonizio L, Gersony WM, Hintze TH . Synergy of amlodipine and angiotensin-converting enzyme inhibitors in regulating myocardial oxygen consumption in normal canine and failing human hearts. Am J Cardiol 1999; 83 (Suppl 12A): 92H–95H.

    Article  CAS  PubMed  Google Scholar 

  85. Jugdutt BI, Menon V, Kumar D, Idikio H . Vascular remodeling during healing after myocardial infarction in the dog model: effects of reperfusion, amlodipine and enalapril. J Am Coll Cardiol 2002; 39: 1538–1545.

    Article  PubMed  Google Scholar 

  86. de Zeeuw D, Remuzzi G, Parving H-H, Keane WF, Zhang Z, Shahinfar S et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 2004; 65: 2309–2320.

    Article  CAS  PubMed  Google Scholar 

  87. Bakris GL . Clinical importance of microalbuminuria in diabetes and hypertension. Curr Hypertens Rep 2004; 6: 352–356.

    Article  PubMed  Google Scholar 

  88. Zhou M-S, Jaimes EA, Raij L . Benazepril combined with either amlodipine or hydrochlorothiazide is more effective than monotherapy for blood pressure control and prevention of end-organ injury in hypertensive Dahl rats. J Cardiovasc Pharmacol 2006; 48: 857–861.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang L, Zalewski A, Liu Y, Mazurek T, Cowan S, Martin JL et al. Diabetes-induced oxidative stress and low-grade inflammation in porcine coronary arteries. Circulation 2003; 108: 472–478.

    Article  CAS  PubMed  Google Scholar 

  90. American Diabetes Association. Nephropathy in diabetes. Diabetes Care 2004; 27 (Suppl 1): S79–S83.

  91. Velasquez MT, Bhathena SJ, Ali AA, Hansen CT . Long-term effects of a reduced fixed-dose combination of benazepril and amlodipine on blood pressure, metabolic control, renal function, and the heart in an animal model of type 2 diabetes mellitus and hypertension. Am J Hypertens 2005; 18 (Suppl 2): 136A Abstract P-360..

    Article  Google Scholar 

  92. Fogari R, Preti P, Zoppi A, Rinaldi A, Corradi L, Pasotti C et al. Effects of amlodipine fosinopril combination on microalbuminuria in hypertensive type 2 diabetic patients. Am J Hypertens 2002; 15: 1042–1049.

    Article  CAS  PubMed  Google Scholar 

  93. Fogari R, Derosa G, Zoppi A, Preti P, Lazzari P, Destro M et al. Effect of telmisartan–amlodipine combination at different doses on urinary albumin excretion in hypertensive diabetic patients with microalbuminuria. Am J Hypertens 2007; 20: 417–422.

    Article  CAS  PubMed  Google Scholar 

  94. Kuriyama S, Tomonari H, Tokudome G, Horiguchi M, Hayashi H, Kobayashi H et al. Antiproteinuric effects of combined antihypertensive therapies in patients with overt type 2 diabetic nephropathy. Hypertens Res 2002; 25: 849–855.

    Article  CAS  PubMed  Google Scholar 

  95. Krimholtz MJ, Karalliedde J, Thomas S, Bilous R, Viberti G . Targeting albumin excretion rate in the treatment of the hypertensive diabetic patient with renal disease. J Am Soc Nephrol 2005; 16 (Suppl 1): S42–S47.

    Article  CAS  PubMed  Google Scholar 

  96. Homma K, Hayashi K, Kanda T, Yoshioka K, Takamatsu I, Tatematsu S et al. Beneficial action of candesartan cilexetil plus amlodipine or ACE inhibitors in chronic nondiabetic renal disease. J Hum Hypertens 2004; 18: 879–884.

    Article  CAS  PubMed  Google Scholar 

  97. MacGregor MS, Deighan CJ, Rodger RS, Boulton-Jones JM . A prospective open-label randomised trial of quinapril and/or amlodipine in progressive non-diabetic renal failure. Nephron Clin Pract 2005; 101: c139–c149.

    Article  CAS  PubMed  Google Scholar 

  98. Winer N, Folker A, Murphy JA, Hung E, Bard M, Perkelvald A et al. Effect of fixed-dose ACE-inhibitor/calcium channel blocker combination therapy vs ACE-inhibitor monotherapy on arterial compliance in hypertensive patients with type 2 diabetes. Prev Cardiol 2005; 8: 87–92.

    Article  CAS  PubMed  Google Scholar 

  99. Tobe S, Kawecka-Jaszcz K, Zannad F, Vetrovec G, Patni R, Shi H . Amlodipine added to quinapril vs quinapril alone for the treatment of hypertension in diabetes: the Amlodipine in Diabetes (ANDI) trial. J Clin Hypertens (Greenwich) 2007; 9: 120–127.

    Article  CAS  Google Scholar 

  100. Neutel JM, Smith DH, Weber MA . Effect of antihypertensive monotherapy and combination therapy on arterial distensibility and left ventricular mass. Am J Hypertens 2004; 17: 37–42.

    Article  CAS  PubMed  Google Scholar 

  101. Mohler 3rd ER, Herrington D, Ouyang P, Mangano C, Ritter S, Davis P, et al., for the EXPLORE Investigators. A randomized, double-blind trial comparing the effects of amlodipine besylate/benazepril HCl vs amlodipine on endothelial function and blood pressure. J Clin Hypertens (Greenwich) 2006; 8: 692–698.

    Article  CAS  Google Scholar 

  102. Williams B, Lacy PS, Thom SM, Cruickshank K, Stanton A, Collier D, et al.,, for the CAFE Investigators; Anglo-Scandinavian Cardiac Outcomes Trial Investigators; CAFE Steering Committee and Writing Committee. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006; 113: 1213–1225.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M R Weir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weir, M. Targeting mechanisms of hypertensive vascular disease with dual calcium channel and renin–angiotensin system blockade. J Hum Hypertens 21, 770–779 (2007). https://doi.org/10.1038/sj.jhh.1002254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1002254

Keywords

This article is cited by

Search

Quick links