Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integration of active human β-galactosidase gene (100 kb) into genome using HSV/AAV amplicon vector

Abstract

Vectors based on herpes simplex virus type-1 (HSV-1) permit delivery of transgenes of up to 150 kb, while the inverted terminal repeats and Rep of the adeno-associated virus (AAV) can confer site-specific integration into the AAVS1 site, which allows sustained expression of a transgene. In this study, combination of the viral elements in HSV/AAV hybrid vectors has been applied for the infectious transfer of the human lysosomal β-galactosidase (BGAL) gene of 100 kb. Temporary expression and functional activity of β-galactosidase (β-gal) could be detected in human β-gal-deficient patient and glioblastoma (Gli36) cells upon infection with the basic BGAL amplicon vector. Sustained expression of β-gal was achieved in Gli36 cells infected with rep-plus, but not rep-minus, HSV/AAV hybrid vectors. None of five clones isolated after rep-minus hybrid vector infection showed elevated β-gal activity or site-specific integration. In contrast, 80% of the rep-plus clones possessed β-gal activity at least twofold greater than normal levels for up to 4 months of continuous growth, and 33% of the clones exhibited AAVS1-specific integration of the ITR-flanked transgene. One of the rep-plus clones displayed integration of the ITR cassette only at the AAVS1 site, with no sequences outside the cassette detectable and β-gal activity fourfold above normal levels. These data demonstrate AAVS1-specific integration of an entire genomic locus and expression of the transgene from the endogenous promoter mediated by an HSV/AAV hybrid vector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Brentani H, Caballero OL, Camargo AA, da Silva AM, da Silva WAJ, Dias Neto E . The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags. Proc Natl Acad Sci USA 2003; 100: 13418–13423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wade-Martins R, Saeki Y, Chiocca EA . Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Therapy 2003; 7: 604–612.

    Article  CAS  Google Scholar 

  3. McGeoch DJ, Dalrymple MA, Davison AJ, Dolan A, Frame MC, McNab D et al. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J Gen Virol 1988; 69: 1531–1574.

    Article  CAS  PubMed  Google Scholar 

  4. Dolan A, Jamieson FE, Cunningham C, Barnett BC, McGeoch DJ . The genome sequence of herpes simplex virus type 2. J Virol 1998; 72: 2010–2021.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Spaete RR, Frenkel N . The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 1982; 30: 295–304.

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham C, Davison AJ . A cosmid-based system for constructing mutants of herpes simplex virus type 1. Virology 1993; 197: 116–124.

    Article  CAS  PubMed  Google Scholar 

  7. Saeki Y, Ichikawa T, Saeki A, Chiocca EA, Tobler K, Ackermann M et al. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors. Hum Gene Therapy 1998; 9: 2787–2794.

    Article  CAS  Google Scholar 

  8. Saeki Y, Fraefel C, Ichikawa T, Breakefield XO, Chiocca EA . Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome. Mol Therapy 2001; 3: 591–601.

    Article  CAS  Google Scholar 

  9. Wade-Martins R, Smith ER, Tyminski E, Chiocca EA, Saeki Y . An infectious transfer and expression system for genomic DNA loci in human and mouse cells. Nat Biotechnol 2001; 19: 1067–1070.

    Article  CAS  PubMed  Google Scholar 

  10. Inoue R, Moghaddam KA, Ranasinghe M, Saeki Y, Chiocca EA, Wade-Martins R . Infectious delivery of the 132 kb CDKN2A/CDKN2B genomic DNA region results in correctly spliced gene expression and growth suppression in glioma cells. Gene Therapy 2004; 11: 1195–1204.

    Article  CAS  PubMed  Google Scholar 

  11. Xing W, Baylink D, Kesavan C, Mohan S . HSV-1 amplicon-mediated transfer of 128-kb BMP-2 genomic locus stimulates osteoblast differentiation in vitro. Biochem Biophys Res Commun 2004; 319: 781–786.

    Article  CAS  PubMed  Google Scholar 

  12. Logvinoff C, Epstein AL . Intracellular Cre-mediated deletion of the unique packaging signal carried by a herpes simplex virus type 1 recombinant and its relationship to the cleavage-packaging process. J Virol 2000; 74: 8402–8412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Logvinoff C, Epstein AL . Genetic engineering of herpes simplex virus and vector genomes carrying loxP sites in cells expressing Cre recombinase. Virology 2000; 267: 102–110.

    Article  CAS  PubMed  Google Scholar 

  14. Logvinoff C, Epstein AL . A novel approach for herpes simplex virus type 1 amplicon vector production, using the Cre-loxP recombination system to remove helper virus. Hum Gene Therapy 2001; 12: 161–167.

    Article  CAS  Google Scholar 

  15. Wang S, Vos JM . A hybrid herpesvirus infectious vector based on Epstein–Barr virus and herpes simplex virus type 1 for gene transfer into human cells in vitro and in vivo. Lineberger Compreh 1996; 70: 8422–8430.

    CAS  Google Scholar 

  16. Liu Q, Perez CF, Wang Y . Efficient site-specific integration of large transgenes by an enhanced herpes simplex virus/adeno-associated virus hybrid amplicon vector. J Virol 2006; 80: 1672–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bakowska JC, Di Maria MV, Camp SM, Wang Y, Allen PD, Breakefield XO . Targeted transgene integration into transgenic mouse fibroblasts carrying the full-length human AAVS1 locus mediated by HSV/AAV rep(+) hybrid amplicon vector. Gene Therapy 2003; 10: 1691–1702.

    Article  CAS  PubMed  Google Scholar 

  18. Heister T, Heid I, Ackermann M, Fraefel C . Herpes simplex virus type 1/adeno-associated virus hybrid vectors mediate site-specific integration at the adeno-associated virus preintegration site, AAVS1, on human chromosome 19. J Virol 2002; 76: 7163–7173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kotin RM, Menninger JC, Ward DC, Berns KI . Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter. Genomics 1991; 10: 831–834.

    Article  CAS  PubMed  Google Scholar 

  20. Kotin RM, Linden RM, Berns KI . Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J 1992; 11: 5071–5078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samulski RJ, Zhu X, Xiao X, Brook JD, Housman DE, Epstein N et al. Targeted integration of adeno-associated virus (AAV) into human chromosome 19. EMBO J 1991; 10: 3941–3950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hong G, Ward P, Berns KI . In vitro replication of adeno-associated virus DNA. Proc Natl Acad Sci USA 1992; 89: 4673–4677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Weitzman MD, Kyostio SR, Kotin RM, Owens RA . Adeno-associated virus (AAV) Rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci USA 1994; 91: 5808–5812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Surosky RT, Urabe M, Godwin SG, McQuiston SA, Kurtzman GJ, Ozawa K et al. Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome. J Virol 1997; 71: 7951–7959.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Linden RM, Winocour E, Berns KI . The recombination signals for adeno-associated virus site-specific integration. Proc Natl Acad Sci USA 1996; 93: 7966–7972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Philpott NJ, Gomos J, Berns KI, Falck-Pedersen E . A p5 integration efficiency element mediates Rep-dependent integration into AAVS1 at chromosome 19. Proc Natl Acad Sci USA 2002; 99: 12381–12385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lam PY, Breakefield XO . Hybrid vector designs to control the delivery, fate and expression of transgenes. J Gene Med 2000; 2: 395–408.

    Article  CAS  PubMed  Google Scholar 

  28. Oehmig A, Fraefel C, Breakefield XO, Ackermann M . Herpes simplex virus type 1 amplicons and their hybrid virus partners, EBV, AAV, and retrovirus. Curr Gene Therapy 2004; 4: 385–408.

    Article  CAS  Google Scholar 

  29. Wang Y, Camp SM, Niwano M, Shen X, Bakowska JC, Breakefield XO et al. Herpes simplex virus type 1/adeno-associated virus rep(+) hybrid amplicon vector improves the stability of transgene expression in human cells by site-specific integration. J Virol 2002; 76: 7150–7162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Suzuki Y, Oshima A . A beta-galactosidase gene mutation identified in both Morquio B disease and infantile GM1 gangliosidosis. Hum Genet 1993; 91: 407.

    Article  CAS  PubMed  Google Scholar 

  31. Shows TB, Scrafford-Wolff LR, Brown JA, Meisler MH . GM1-gangliosidosis: chromosome 3 assignment of the beta-galactosidase-A gene (beta GALA). Somatic Cell Genet 1979; 5: 147–158.

    Article  CAS  PubMed  Google Scholar 

  32. Morreau H, Bonten E, Zhou XY, D’Azzo A . Organization of the gene encoding human lysosomal beta-galactosidase. DNA Cell Biol 1991; 10: 495–504.

    Article  CAS  PubMed  Google Scholar 

  33. Hinek A, Zhang S, Smith AC, Callahan JW . Impaired elastic-fiber assembly by fibroblasts from patients with either Morquio B disease or infantile GM1-gangliosidosis is linked to deficiency in the 67-kD spliced variant of beta-galactosidase. Am J Hum Genet 2000; 67: 23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caciotti A, Donati MA, Bardelli T, d’Azzo A, Massai G, Luciani L et al. Primary and secondary elastin-binding protein defect leads to impaired elastogenesis in fibroblasts from GM1-gangliosidosis patients. Am J Pathol 2005; 167: 1689–1698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheng SH, Smith AE . Gene therapy progress and prospects: gene therapy of lysosomal storage disorders. Gene Therapy 2003; 10: 1275–1281.

    Article  CAS  PubMed  Google Scholar 

  36. Kornfeld S . Trafficking of lysosomal enzymes. FASEB J 1987; 1: 462–468.

    Article  CAS  PubMed  Google Scholar 

  37. Hahn CN, del Pilar Martin M, Schroder M, Vanier MT, Hara Y, Suzuki K et al. Generalized CNS disease and massive GM1-ganglioside accumulation in mice defective in lysosomal acid beta-galactosidase. Hum Mol Genet 1997; 6: 205–211.

    Article  CAS  PubMed  Google Scholar 

  38. Matsuda J, Suzuki O, Oshima A, Ogura A, Noguchi Y, Yamamoto Y et al. Beta-galactosidase-deficient mouse as an animal model for GM1-gangliosidosis. Glycoconj J 1998; 14: 729–736.

    Article  Google Scholar 

  39. Bantel-Schaal U, zur Hausen H . Adeno-associated viruses inhibit SV40 DNA amplification and replication of herpes simplex virus in SV40-transformed hamster cells. Virology 1988; 164: 64–74.

    Article  CAS  PubMed  Google Scholar 

  40. Laughlin CA, Cardellichio CB, Coon HC . Latent infection of KB cells with adeno-associated virus type 2. J Virol 1986; 60: 515–524.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. McLaughlin SK, Collis P, Hermonat PL, Muzyczka N . Adeno-associated virus general transduction vectors: analysis of proviral structures. J Virol 1988; 62: 1963–1973.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Kotin RM, Siniscalco M, Samulski RJ, Zhu XD, Hunter L, Laughlin CA et al. Site-specific integration by adeno-associated virus. Proc Natl Acad Sci USA 1990; 87: 2211–2215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Philpott NJ, Giraud-Wali C, Dupuis C, Gomos J, Hamilton H, Berns KI et al. Efficient integration of recombinant adeno-associated virus DNA vectors requires a p5-rep sequence in cis. J Virol 2002; 76: 5411–5421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Goncalves MA, van Nierop GP, Tijssen MR, Lefesvre P, Knaan-Shanzer S, van der Velde I et al. Transfer of the full-length dystrophin-coding sequence into muscle cells by a dual high-capacity hybrid viral vector with site-specific integration ability. J Virol 2005; 79: 146–162.

    Article  Google Scholar 

  45. Zarrin AA, Malkin L, Fong I, Luk KD, Ghose A, Berinstein NL . Comparison of CMV, RSV, SV40 viral and Vlambda1 cellular promoters in B and T lymphoid and non-lymphoid cell lines. Biochim Biophys Acta 1999; 1446: 135–139.

    Article  CAS  PubMed  Google Scholar 

  46. Heilbronn R, Burkle A, Stephan S, zur Hausen H . The adeno-associated virus rep gene suppresses herpes simplex virus-induced DNA amplification. J Virol 1990; 64: 3012–3018.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Weitzman MD, Fisher KJ, Wilson JM . Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers. J Virol 1996; 70: 1845–1854.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Recchia A, Parks RJ, Lamartina S, Toniatti C, Pieroni L, Palombo F et al. Site-specific integration mediated by a hybrid adenovirus/adeno-associated virus vector. Proc Natl Acad Sci USA 1999; 96: 2615–2620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Recchia A, Perani L, Sartori D, Olgiati C, Mavilio F . Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Therapy 2004; 10: 660–670.

    Article  CAS  Google Scholar 

  50. Balague C, Kalla M, Zhang WW . Adeno-associated virus Rep78 protein and terminal repeats enhance integration of DNA sequences into the cellular genome. J Virol 1997; 71: 3299–3306.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Xiao K, Li J, Samulski RJ . Efficient long-term gene transfer into muscle tissue of immunocompetent mice by adeno-associated virus vector. J Virol 1996; 70: 8098–8108.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Xiao X, Xiao W, Li J, Samulski RJ . A novel 165-base-pair terminal repeat sequence is the sole cis requirement for the adeno-associated virus life cycle. J Virol 1997; 71: 941–948.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Lamartina S, Ciliberto G, Toniatti C . Selective cleavage of AAVS1 substrates by the adeno-associated virus type 2 rep68 protein is dependent on topological and sequence constraints. J Virol 2000; 74: 8831–8842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miller DG, Trobridge GD, Petek LM, Jacobs MA, Kaul R, Russell DW . Large-scale analysis of adeno-associated virus vector integration sites in normal human cells. J Virol 2005; 79: 11434–11442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang H, Lieber A . A helper-dependent caspid-modified adenovirus vector expressing AAV-Rep 78 mediates site-specific integration of a 27kb transgene cassette. J Virol 2006; 80: 11699–11709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mendelson E, Smith MG, Miller IL, Carter BJ . Effect of a viral rep gene on transformation of cells by an adeno-associated virus vector. Virology 1988; 166: 612–615.

    Article  CAS  PubMed  Google Scholar 

  57. Samulski RJ, Chang LS, Shenk T, Fisher KJ, Jooss K, Alston J et al. Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol 1989; 63: 3822–3828.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Datsenko KA, Wanner BL . One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000; 97: 6640–6645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Saeki Y, Breakefield XO, Chiocca EA . Improved HSV-1 amplicon packaging system using ICP27-deleted, oversized HSV-1 BAC DNA. In: Machida CA (ed). Viral Vectors for Gene Therapy, Methods and Protocols. Human Press: Totowa, New Jersey, 2003, pp 51–60.

    Google Scholar 

  60. Oshima A, Tsuji A, Nagao Y, Sakuraba H, Suzuki Y . Cloning, sequencing, and expression of cDNA for human beta-galactosidase. Biochem Biophys Res Commun 1988; 157: 238–244.

    Article  CAS  PubMed  Google Scholar 

  61. Smith IL, Hardwicke MA, Sandri-Goldin RM . Evidence that the herpes simplex virus immediate early protein ICP27 acts post-transcriptionally during infection to regulate gene expression. Virology 1992; 186: 74–86.

    Article  CAS  PubMed  Google Scholar 

  62. Breakefield XO, Braverman M, Riker DK, Giller ELJ . Catechol-O-methyltransferase activity in cultured human skin fibroblasts from controls and patients with dystonia musculorum deformans. J Neurosci Res 1981; 6: 349–360.

    Article  CAS  PubMed  Google Scholar 

  63. Sena-Esteves M, Hampl JA, Camp SM, Breakefield XO . Generation of stable retrovirus packaging cell lines after transduction with herpes simplex virus hybrid amplicon vectors. J Gene Med 2002; 4: 229–239.

    Article  PubMed  Google Scholar 

  64. Suzuki K . Enzymatic diagnosis of sphingolipidoses. Meth Enzymol 1987; 138: 727–762.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Suzanne McDavitt for skilled preparation of the manuscript. This work was supported by the German Research Foundation Grant OE259/1-1 (AO), NCI CA69246 (XOB and CF) and NINDS NS24279 (XOB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X O Breakefield.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oehmig, A., Cortés, M., Perry, K. et al. Integration of active human β-galactosidase gene (100 kb) into genome using HSV/AAV amplicon vector. Gene Ther 14, 1078–1091 (2007). https://doi.org/10.1038/sj.gt.3302960

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302960

Keywords

This article is cited by

Search

Quick links