Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Tumor cell targeted gene delivery by adenovirus 5 vectors carrying knobless fibers with antibody-binding domains

Abstract

Most human carcinoma cell lines lack the high-affinity receptors for adenovirus serotype 5 (Ad5) at their surface and are nonpermissive to Ad5. We therefore tested the efficiency of retargeting Ad5 to alternative cellular receptors via immunoglobulin (Ig)-binding domains inserted at the extremity of short-shafted, knobless fibers. The two recombinant Ad5's constructed, Ad5/R7-Zwt-Zwt and Ad5/R7-C2-C2, carried tandem Ig-binding domains from Staphylococcal protein A (abbreviated Zwt) and from Streptococcal protein G (C2), respectively. Both viruses bound their specific Ig isotypes with the expected affinity. They transduced human carcinoma cells independently of the CAR pathway, via cell surface receptors targeted by specific monoclonal antibodies, that is, EGF-R on A549, HT29 and SW1116, HER-2/neu on SK-OV-3 and SK-BR-3, CA242 (epitope recognized by the monoclonal antibody C242) antigen on HT29 and SW1116, and PSMA (prostate-specific membrane antigen) expressed on HEK-293 cells, respectively. However, Colo201 and Colo205 cells were neither transduced by targeting CA242 or EGF-R nor were LNCaP cells transduced by targeting PSMA. Our results suggested that one given surface receptor could mediate transduction of certain cells but not others, indicating that factors and steps other than cell surface expression and virus–receptor interaction are additional determinants of Ad5-mediated transduction of tumor cells. Using penton base RGD mutants, we found that one of these limiting steps was virus endocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Russell WC . Update on adenovirus and its vectors. J Gen Virol 2000; 81: 2573–2604.

    Article  CAS  PubMed  Google Scholar 

  2. Krasnykh VN, Douglas JT, van Beusechem VW . Genetic targeting of adenoviral vectors. Mol Ther 2000; 1: 391–405.

    Article  CAS  PubMed  Google Scholar 

  3. Bergelson JM et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  4. Hong SS et al. Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997; 16: 2294–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  6. Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G . Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2–host cell interactions. Virology 2000; 268: 382–390.

    Article  CAS  PubMed  Google Scholar 

  7. Tomko RP, Xu R, Philipson L . HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci USA 1997; 94: 3352–3356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hong SS et al. Enhancement of adenovirus-mediated gene delivery by use of an oligopeptide with dual binding specificity. Hum Gene Ther 1999; 10: 2577–2586.

    Article  CAS  PubMed  Google Scholar 

  9. Wickham TJ et al. Targeted adenovirus-mediated gene delivery to T cells via CD3. J Virol 1997; 71: 7663–7669.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. van Beusechem VW et al. Efficient and selective gene transfer into primary human brain tumors by using single-chain antibody-targeted adenoviral vectors with native tropism abolished. J Virol 2002; 76: 2753–2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soudais C et al. Canine adenovirus type 2 attachment and internalization: coxsackievirus-adenovirus receptor, alternative receptors, and an RGD-independent pathway. J Virol 2000; 74: 10639–10649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Magnusson MK, Hong SS, Boulanger P, Lindholm L . Genetic retargeting of adenovirus: novel strategy employing ‘deknobbing’ of the fiber. J Virol 2001; 75: 7280–7289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Henning P et al. Genetic modification of adenovirus 5 tropism by a novel class of ligands based on a three-helix bundle scaffold derived from staphylococcal protein A. Hum Gene Ther 2002; 13: 1427–1439.

    Article  CAS  PubMed  Google Scholar 

  14. Magnusson MK et al. Genetic retargeting of adenovirus vectors: functionality of targeting ligands and their influence on virus viability. J Gene Med 2002; 4: 356–370.

    Article  CAS  PubMed  Google Scholar 

  15. Nilsson B et al. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1987; 1: 107–113.

    Article  CAS  PubMed  Google Scholar 

  16. Nord K et al. A combinatorial library of an alpha-helical bacterial receptor domain. Protein Eng 1995; 8: 601–608.

    Article  CAS  PubMed  Google Scholar 

  17. Eliasson M et al. Differential IgG-binding characteristics of staphylococcal protein A, streptococcal protein G, and a chimeric protein AG. J Immunol 1989; 142: 575–581.

    CAS  PubMed  Google Scholar 

  18. Harlow E, Lane D . Reagents. In: Harlow E, Lane D (ed). Antibodies, A Laboratory Manual. Cold Spring Harbor Laboratory: New York, 1988, pp 613–633.

    Google Scholar 

  19. Nagaoka M, Akaike T . Single amino acid substitution in the mouse IgG1 Fc region induces drastic enhancement of the affinity to protein A. Protein Eng 2003; 16: 243–245.

    Article  CAS  PubMed  Google Scholar 

  20. Ciardiello F, Tortora G . A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin Cancer Res 2001; 7: 2958–2970.

    CAS  PubMed  Google Scholar 

  21. Sridhar SS, Seymour L, Shepherd FA . Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol 2003; 4: 397–406.

    Article  CAS  PubMed  Google Scholar 

  22. Curnow RT . Clinical experience with CD64-directed immunotherapy. An overview. Cancer Immunol Immunother 1997; 45: 210–215.

    Article  CAS  PubMed  Google Scholar 

  23. Volpers C et al. Antibody-mediated targeting of an adenovirus vector modified to contain a synthetic immunoglobulin G-binding domain in the capsid. J Virol 2003; 77: 2093–2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hung MC, Lau YK . Basic science of HER-2/neu: a review. Semin Oncol 1999; 26: 51–59.

    CAS  PubMed  Google Scholar 

  25. Baselga J et al. Phase II study of weekly intravenous recombinant humanized anti-p185HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996; 14: 737–744.

    Article  CAS  PubMed  Google Scholar 

  26. Molina MA et al. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal antibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2001; 61: 4744–4749.

    CAS  PubMed  Google Scholar 

  27. Kashentseva EA, Seki T, Curiel DT, Dmitriev IP . Adenovirus targeting to c-erbB-2 oncoprotein by single-chain antibody fused to trimeric form of adenovirus receptor ectodomain. Cancer Res 2002; 62: 609–616.

    CAS  PubMed  Google Scholar 

  28. Baeckstrom D et al. Discrimination of MUC1 mucins from other sialyl-Le(a)-carrying glycoproteins produced by colon carcinoma cells using a novel monoclonal antibody. Cancer Res 1993; 53: 755–761.

    CAS  PubMed  Google Scholar 

  29. Johansson C et al. Novel epitopes on the CA50-carrying antigen: chemical and immunochemical studies. Tumour Biol 1991; 12: 159–170.

    Article  CAS  PubMed  Google Scholar 

  30. Debinski W, Pastan I . Recombinant F(ab′) C242-Pseudomonas exotoxin, but not the whole antibody-based immunotoxin, causes regression of a human colorectal tumor xenograft. Clin Cancer Res 1995; 1: 1015–1022.

    CAS  PubMed  Google Scholar 

  31. Calvete JA, Newell DR, Wright AF, Rose MS . In vitro and in vivo antitumor activity of ZENECA ZD0490, a recombinant ricin A-chain immunotoxin for the treatment of colorectal cancer. Cancer Res 1994; 54: 4684–4690.

    CAS  PubMed  Google Scholar 

  32. Chang SS et al. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res 1999; 59: 3192–3198.

    CAS  PubMed  Google Scholar 

  33. Fracasso G et al. Anti-tumor effects of toxins targeted to the prostate specific membrane antigen. Prostate 2002; 53: 9–23.

    Article  CAS  PubMed  Google Scholar 

  34. Smith-Jones PM et al. Radiolabeled monoclonal antibodies specific to the extracellular domain of prostate-specific membrane antigen: preclinical studies in nude mice bearing LNCaP human prostate tumor. J Nucl Med 2003; 44: 610–617.

    CAS  PubMed  Google Scholar 

  35. Trainer DL et al. Biological characterization and oncogene expression in human colorectal carcinoma cell lines. Int J Cancer 1988; 41: 287–296.

    Article  CAS  PubMed  Google Scholar 

  36. Wickham TJ et al. Increased in vitro and in vivo gene transfer by adenovirus vectors containing chimeric fiber proteins. J Virol 1997; 71: 8221–8229.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Krasnykh V et al. Genetic targeting of an adenovirus vector via replacement of the fiber protein with the phage T4 fibritin. J Virol 2001; 75: 4176–4183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van Beusechem VW et al. Conditionally replicative adenovirus expressing a targeting adapter molecule exhibits enhanced oncolytic potency on CAR-deficient tumors. Gene Therapy 2003; 10: 1982–1991.

    Article  CAS  PubMed  Google Scholar 

  39. Jongmans W et al. Targeting of adenovirus to human renal cell carcinoma cells. Urology 2003; 62: 559–565.

    Article  PubMed  Google Scholar 

  40. Barker SD et al. Combined transcriptional and transductional targeting improves the specificity and efficacy of adenoviral gene delivery to ovarian carcinoma. Gene Therapy 2003; 10: 1198–1204.

    Article  CAS  PubMed  Google Scholar 

  41. Blackwell JL et al. Retargeting to EGFR enhances adenovirus infection efficiency of squamous cell carcinoma. Arch Otolaryngol Head Neck Surg 1999; 125: 856–863.

    Article  CAS  PubMed  Google Scholar 

  42. Meier O, Greber UF . Adenovirus endocytosis. J Gene Med 2003; 5: 451–462.

    Article  CAS  PubMed  Google Scholar 

  43. Medina-Kauwe LK . Endocytosis of adenovirus and adenovirus capsid proteins. Adv Drug Deliv Rev 2003; 55: 1485–1496.

    Article  CAS  PubMed  Google Scholar 

  44. Chroboczek J, Gout E, Favier AL, Galinier R . Novel partner proteins of adenovirus penton. Curr Top Microbiol Immunol 2003; 272: 37–55.

    CAS  PubMed  Google Scholar 

  45. Miyazawa N, Crystal RG, Leopold PL . Adenovirus serotype 7 retention in a late endosomal compartment prior to cytosol escape is modulated by fiber protein. J Virol 2001; 75: 1387–1400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jendeberg L et al. Engineering of Fc(1) and Fc(3) from human immunoglobulin G to analyse subclass specificity for staphylococcal protein A. J Immunol Methods 1997; 201: 25–34.

    Article  CAS  PubMed  Google Scholar 

  47. Hong JS, Engler JA . The amino terminus of the adenovirus fiber protein encodes the nuclear localization signal. Virology 1991; 185: 758–767.

    Article  CAS  PubMed  Google Scholar 

  48. Gülich S, Linhult M, Stahl S, Hober S . Engineering streptococcal protein G for increased alkaline stability. Protein Eng 2002; 15: 835–842.

    Article  PubMed  Google Scholar 

  49. Karayan L et al. Structural and functional determinants in adenovirus type 2 penton base recombinant protein. J Virol 1997; 71: 8678–8689.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Neumann R, Chroboczek J, Jacrot B . Determination of the nucleotide sequence for the penton-base gene of human adenovirus type 5. Gene 1988; 69: 153–157.

    Article  CAS  PubMed  Google Scholar 

  51. O’Reilly DR, Miller LK, Luckow VA . Virus Methods. In: Press OU (ed) Baculovirus Expression Vectors. A Laboratory Manual. Oxford, England, 1994, pp 124–138.

    Google Scholar 

  52. Mittereder N, March KL, Trapnell BC . Evaluation of the concentration and bioactivity of adenovirus vectors for gene therapy. J Virol 1996; 70: 7498–7509.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Simone Peyrol and Christel Mathias (Centre Commun d’Imagerie, Faculté de Médecine Laennec) for their help in electron microscopy. We acknowledge the Swegene Centre of Cellular Imaging at Gothenburg University for the use of imaging equipment. This work was financially supported by grants from Got-a-Gene AB, Stena Center, Gothenburg, Sweden, from the Association Françai'se contre les Myopathies (AFM), Institut de Myologie, Paris (Subvention AFM/Groupe E/2003/11845-9481), and from the Association Vaincre la Mucoviscidose (VLM), Paris, France.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henning, P., Andersson, K., Frykholm, K. et al. Tumor cell targeted gene delivery by adenovirus 5 vectors carrying knobless fibers with antibody-binding domains. Gene Ther 12, 211–224 (2005). https://doi.org/10.1038/sj.gt.3302408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302408

Keywords

This article is cited by

Search

Quick links