Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene

Abstract

Clinical studies with oncolytic adenoviruses have shown that existing viruses are safe but lack efficacy. To selectively increase the toxicity of oncolytic adenoviruses targeting colon tumours, we have inserted the yeast cytosine deaminase gene (yCD) after the fibre gene in the major late transcript. yCD was expressed using either an internal ribosome entry site (IRES) or by alternative splicing of a new exon analogous to the Ad41 long fibre exon. The IRES-CD virus gave higher yCD expression on Western blots. Both approaches result in yCD expression restricted to the period after viral DNA replication. Viral burst size was reduced by less than 10-fold by 5-fluorocytosine (5-FC), showing that expression of yCD as a late gene is compatible with virus replication. Cytopathic effect assays in colon cancer cell lines showed that both yCD viruses have 10-fold increased toxicity in the presence of the prodrug 5-FC, which is converted to 5-fluorouracil (5-FU) by yCD. Toxicity was higher following addition of 5-FC immediately after infection. The largest gain in toxicity was seen in HT29 colon cancer cells, which are the least permissive colon cancer cells for the parental virus, indicating that the new 5-FC/yCD viruses may have broader applications for colon cancer therapy than their predecessors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bischoff JR et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274: 373–376.

    Article  CAS  PubMed  Google Scholar 

  2. Heise C et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6: 1134–1139.

    Article  CAS  PubMed  Google Scholar 

  3. Hallenbeck PL et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999; 10: 1721–1733.

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez R et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57: 2559–2563.

    CAS  PubMed  Google Scholar 

  5. Johnson L et al. Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. Cancer Cell 2002; 1: 325–337.

    Article  CAS  PubMed  Google Scholar 

  6. Brunori M, Malerba M, Kashiwazaki H, Iggo R . Replicating adenoviruses that target tumors with constitutive activation of the wnt signaling pathway. J Virol 2001; 75: 2857–2865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuerer C, Iggo R . Adenoviruses with Tcf binding sites in multiple early promoters show enhanced selectivity for tumour cells with constitutive activation of the wnt signalling pathway. Gene Therapy 2002; 9: 270–281.

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez-Alcoceba R, Pihalja M, Qian D, Clarke MF . New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum Gene Ther 2002; 13: 1737–1750.

    Article  CAS  PubMed  Google Scholar 

  9. Wickham TJ . Ligand-directed targeting of genes to the site of disease. Nat Med 2003; 9: 135–139.

    Article  CAS  PubMed  Google Scholar 

  10. Greco O, Dachs GU . Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001; 187: 22–36.

    Article  CAS  PubMed  Google Scholar 

  11. Kirn D, Niculescu-Duvaz I, Hallden G, Springer CJ . The emerging fields of suicide gene therapy and virotherapy. Trends Mol Med 2002; 8: S68–73.

    Article  CAS  PubMed  Google Scholar 

  12. Grem JL . 5-Fluorouracil: forty-plus and still ticking. A review of its preclinical and clinical development. Invest New Drugs 2000; 18: 299–313.

    Article  CAS  PubMed  Google Scholar 

  13. Freytag SO et al. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9: 1323–1333.

    Article  CAS  PubMed  Google Scholar 

  14. Rogulski KR et al. Double suicide gene therapy augments the antitumor activity of a replication-competent lytic adenovirus through enhanced cytotoxicity and radiosensitization. Hum Gene Ther 2000; 11: 67–76.

    Article  CAS  PubMed  Google Scholar 

  15. Bett AJ, Prevec L, Graham FL . Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 1993; 67: 5911–5921.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sauthoff H et al. Late expression of p53 from a replicating adenovirus improves tumor cell killing and is more tumor cell specific than expression of the adenoviral death protein. Hum Gene Ther 2002; 13: 1859–1871.

    Article  CAS  PubMed  Google Scholar 

  17. Harada JN, Berk AJ . p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 1999; 73: 5333–5344.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rothmann T et al. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72: 9470–9478.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Edwards SJ et al. Evidence that replication of the antitumor adenovirus ONYX-015 is not controlled by the p53 and p14 (ARF) tumor suppressor genes. J Virol 2002; 76: 12483–12490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Freytag SO et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002; 62: 4968–4976.

    CAS  PubMed  Google Scholar 

  21. Hawkins LK, Hermiston T . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the E3B region. Gene Therapy 2001; 8: 1142–1148.

    Article  CAS  PubMed  Google Scholar 

  22. Hawkins LK, Hermiston TW . Gene delivery from the E3 region of replicating human adenovirus: evaluation of the ADP region. Gene Therapy 2001; 8: 1132–1141.

    Article  CAS  PubMed  Google Scholar 

  23. Hawkins LK et al. Gene delivery from the E3 region of replicating human adenovirus: evaluation of the 6.7 K/gp 19 K region. Gene Therapy 2001; 8: 1123–1131.

    Article  CAS  PubMed  Google Scholar 

  24. Bauzon M et al. Multigene expression from a replicating adenovirus using native viral promoters. Mol Ther 2003; 7: 526–534.

    Article  CAS  PubMed  Google Scholar 

  25. Yu DC et al. The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 1999; 59: 4200–4203.

    CAS  PubMed  Google Scholar 

  26. Suzuki K, Alemany R, Yamamoto M, Curiel DT . The presence of the adenovirus E3 region improves the oncolytic potency of conditionally replicative adenoviruses. Clin Cancer Res 2002; 8: 3348–3359.

    CAS  PubMed  Google Scholar 

  27. Ginsberg HS, Prince GA . The molecular basis of adenovirus pathogenesis. Infect Agents Dis 1994; 3: 1–8.

    CAS  PubMed  Google Scholar 

  28. Hamstra DA et al. Enzyme/prodrug therapy for head and neck cancer using a catalytically superior cytosine deaminase. Hum Gene Ther 1999; 10: 1993–2003.

    Article  CAS  PubMed  Google Scholar 

  29. Nyati MK et al. High and selective expression of yeast cytosine deaminase under a carcinoembryonic antigen promoter-enhancer. Cancer Res 2002; 62: 2337–2342.

    CAS  PubMed  Google Scholar 

  30. Rosin-Arbesfeld R, Cliffe A, Brabletz T, Bienz M . Nuclear export of the APC tumour suppressor controls beta-catenin function in transcription. EMBO J 2003; 22: 1101–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van de Wetering M et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111: 241–250.

    Article  CAS  PubMed  Google Scholar 

  32. Bunz F et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 1998; 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  33. Wong ET, Ngoi SM, Lee CG . Improved co-expression of multiple genes in vectors containing internal ribosome entry sites (IRESes) from human genes. Gene Therapy 2002; 9: 337–344.

    Article  CAS  PubMed  Google Scholar 

  34. Muhlemann O, Yue BG, Petersen-Mahrt S, Akusjarvi G . A novel type of splicing enhancer regulating adenovirus pre-mRNA splicing. Mol Cell Biol 2000; 20: 2317–2325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brough DE et al. A gene transfer vector-cell line system for complete functional complementation of adenovirus early regions E1 and E4. J Virol 1996; 70: 6497–6501.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Broker TR . Nucleotide sequences, transcription and translation analyses and restriction enzyme cleavage maps of group C adenoviruses. In: Tooze J (ed). DNA Tumour Viruses. Cold Spring Harbor: New York, 1981, pp 994–995.

    Google Scholar 

  37. Bernt KM et al. Enzyme-activated prodrug therapy enhances tumor-specific replication of adenovirus vectors. Cancer Res 2002; 62: 6089–6098.

    CAS  PubMed  Google Scholar 

  38. Heise C et al. Onyx-015, an E1b gene-attenuated adenovirus, causes tumor-specific cytolysis and antitumoral efficacy that can be augmented by standard chemotherapeutic agents. Nat Med 1997; 3: 639–645.

    Article  CAS  PubMed  Google Scholar 

  39. Reid T et al. Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 2002; 62: 6070–6079.

    CAS  PubMed  Google Scholar 

  40. Khuri FR et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6: 879–885.

    Article  CAS  PubMed  Google Scholar 

  41. Chung-Faye GA et al. In vivo gene therapy for colon cancer using adenovirus-mediated, transfer of the fusion gene cytosine deaminase and uracil phosphoribosyltransferase. Gene Therapy 2001; 8: 1547–1554.

    Article  CAS  PubMed  Google Scholar 

  42. Ciccolini J et al. Combination of thymidine phosphorylase gene transfer and deoxyinosine treatment greatly enhances 5-fluorouracil antitumor activity in vitro and in vivo. Mol Cancer Ther 2001; 1: 133–139.

    CAS  PubMed  Google Scholar 

  43. Wierdl M et al. Sensitization of human tumor cells to CPT-11 via adenoviral-mediated delivery of a rabbit liver carboxylesterase. Cancer Res 2001; 61: 5078–5082.

    CAS  PubMed  Google Scholar 

  44. Lipinski KS et al. High-level, beta-catenin/TCF-dependent transgene expression in secondary colorectal cancer tissue. Mol Ther 2001; 4: 365–371.

    Article  CAS  PubMed  Google Scholar 

  45. Hermiston TW, Kuhn I . Armed therapeutic viruses: strategies and challenges to arming oncolytic viruses with therapeutic genes. Cancer Gene Ther 2002; 9: 1022–1035.

    Article  CAS  PubMed  Google Scholar 

  46. Post DE, Khuri FR, Simons JW, Van Meir EG . Replicative oncolytic adenoviruses in multimodal cancer regimens. Hum Gene Ther 2003; 14: 933–946.

    Article  CAS  PubMed  Google Scholar 

  47. Kruyt FA, Curiel DT . Toward a new generation of conditionally replicating adenoviruses: pairing tumor selectivity with maximal oncolysis. Hum Gene Ther 2002; 13: 485–495.

    Article  CAS  PubMed  Google Scholar 

  48. Ring CJ . Cytolytic viruses as potential anti-cancer agents. J Gen Virol 2002; 83: 491–502.

    Article  PubMed  Google Scholar 

  49. Hawkins LK, Lemoine NR, Kirn D . Oncolytic biotherapy: a novel therapeutic plafform. Lancet Oncol 2002; 3: 17–26.

    Article  CAS  PubMed  Google Scholar 

  50. Bell JC, Lichty B, Stojdl D . Getting oncolytic virus therapies off the ground. Cancer Cell 2003; 4: 7–11.

    Article  CAS  PubMed  Google Scholar 

  51. Sikorski RS, Hieter P . A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 1989; 122: 19–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gagnebin J et al. A photosensitising adenovirus for photodynamic therapy. Gene Therapy 1999; 6: 1742–1750.

    Article  CAS  PubMed  Google Scholar 

  53. Reich NC, Sarnow P, Duprey E, Levine AJ . Monoclonal antibodies which recognize native and denatured forms of the adenovirus DNA-binding protein. Virology 1983; 128: 480–484.

    Article  CAS  PubMed  Google Scholar 

  54. Marton MJ, Baim SB, Ornelles DA, Shenk T . The adenovirus E4 17-kilodalton protein complexes with the cellular transcription factor E2F, altering its DNA-binding properties and stimulating E1A-independent accumulation of E2 mRNA. J Virol 1990; 64: 2345–2359.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I Voria (ISREC Virus Core Facility) for production and titering of viruses. We thank A Ducraux for expert technical assistance. We thank O Zilian, M Nabholz, B Vogelstein, M van de Wetering and AJ Levine for supplying reagents. We thank P Gönczy for critical reading of the manuscript. We thank the Swiss National Science Foundation, Swiss Cancer League, Roche Research Foundation, NCCR Molecular Oncology and ISREC for financial support.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuerer, C., Iggo, R. 5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene. Gene Ther 11, 142–151 (2004). https://doi.org/10.1038/sj.gt.3302148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302148

Keywords

This article is cited by

Search

Quick links