Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Biased epitope selection by recombinant vaccinia-virus (rVV)-infected mature or immature dendritic cells

Abstract

Recombinant expression vectors represent a powerful way to deliver whole antigens (Ags) for immunization. Sustained Ag expression in vector-infected dendritic cells (DC) combines Ag-specific stimulation with powerful costimulation and, simultaneously, through ‘self-selection’ of ad hoc epitopes broadens the scope of immunization beyond restrictions posed by individual patients' human leukocyte antigen (HLA) phenotype. In this study, therefore, we evaluated the efficiency of a recombinant vaccinia virus encoding the gp100/PMel17 melanoma Ag (rVV-gp100) to infect immature (iDC) or mature dendritic cells (mDC) derived from circulating mononuclear cells and the effect of infection on their status of maturation. In addition, we tested the ability of rVV-gp100-infected iDC and mDC to present the HLA-A*0201-associated gp100:209-217 epitope (g209). Irrespective of status of maturation, rVV-gp100 infection induced gp100 expression while only partially reversing the expression of some maturation markers. However, endogenous presentation of the wild-type g209 epitope was inefficient. The low efficiency was epitope-specific since infection of DC with rVV encoding a gp100 construct containing the modified gp100:209-217 (210M) (g209-2M) epitope characterized by high binding affinity for HLA-A*0201 restored efficient Ag presentation. Presentation of an HLA-class II-associated epitope and cytokine release by DC was not altered by rVV infection. Thus, Ag expression driven by rVV may be an efficient strategy for whole Ag delivery. However, since the effectiveness of Ag processing and presentation is subject to stringent HLA/epitope pairing, and for other yet undefined rules, the assumption that whole Ag delivery may circumvent HLA restriction is incorrect and recombinant expression vectors encoding well-characterized polyepitopic constructs may prove more effective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bhardwaj N, Friedman SM, Cole BC, Nisanian AJ . Dendritic cells are potent antigen-presenting cells for microbial superantigens. J Exp Med 1992; 175: 267–273.

    Article  CAS  PubMed  Google Scholar 

  2. Bhardwaj N . Processing and presentation of antigen by dendritic cells: implications for vaccines. Trends Mol Med 2001; 7: 388–394.

    Article  CAS  PubMed  Google Scholar 

  3. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392: 86–89.

    Article  CAS  PubMed  Google Scholar 

  4. Fontaneau JF, Larsson M, Bhardwaj N . Dendritic cell–dead-cell interactions: implications and relevance for immunotherapy. J Immunother 2001; 24: 294–304.

    Article  Google Scholar 

  5. Bronte V et al. Antigen expression by dendritic cell correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proc Natl Acad Sci USA 1997; 94(7): 3183–3188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhardwaj N et al. Influenza virus-infected dendritic cells stimulate strong proliferative and cytolytic responses from human CD8+ T cells. J Clin Invest 1994; 94: 797–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim CJ et al. Dendritic cells infected with poxviruses encoding MART-1/MelanA sensitize T lymphocytes in vitro. J Immunother 1997; 20: 276–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kim CJ et al. Use of recombinant poxviruses to stimulate anti-melanoma T cell reactivity. Ann Surg Oncol 1998; 5: 64–76.

    Article  CAS  PubMed  Google Scholar 

  9. Schutz A et al. Immunogenicity of nonreplicating recombinant vaccinia expressing HLA-A201 targeted or complete MART-1/MelanA antigen. Cancer Gene Ther 2001; 8: 655–661.

    Article  CAS  PubMed  Google Scholar 

  10. Sette A et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J Immunol 1994; 153: 5586–5592.

    CAS  PubMed  Google Scholar 

  11. Kawakami Y et al. Identification of the immunodominant peptides of the MART-1 human melanoma antigen recognized by the majority of HLA-A2-restricted tumor infiltrating lymphocytes. J Exp Med 1994; 180: 347–352.

    Article  CAS  PubMed  Google Scholar 

  12. Kawakami Y et al. Recognition of multiple epitopes in the human melanoma antigen gp100 by tumor-infiltrating T lymphocytes associated with in vivo tumor regression. J Immunol 1995; 154: 3961–3968.

    CAS  PubMed  Google Scholar 

  13. Parkhurst MR et al. Improved induction of melanoma reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201 binding residues. J Immunol 1996; 157: 2539–2548.

    CAS  PubMed  Google Scholar 

  14. Valmori D et al. Diversity of the fine specificity displayed by HLA-A*0201-restricted CTL specific for the immunodominant Melan-A/MART-1 antigenic peptide. J Immunol 1998; 161: 6956–6962.

    CAS  PubMed  Google Scholar 

  15. Rivoltini L et al. A superagonist variant of peptide MART-1/Melan A27-35 elicits anti-melanoma CD8+ T cells with enhanced functional characteristics: implications for more effective immunotherapy. Cancer Res 1999; 59: 301–306.

    CAS  PubMed  Google Scholar 

  16. Valmori D et al. Optimal activation of tumor-reactive T cells by selected antigenic peptide analogues. Int Immunol 1999; 11: 1971–1980.

    Article  CAS  PubMed  Google Scholar 

  17. Salgaller ML, Marincola FM, Cormier JN, Rosenberg SA . Immunization against epitopes in the human melanoma antigen gp100 following patient immunization with synthetic peptides. Cancer Res 1996; 56: 4749–4757.

    CAS  PubMed  Google Scholar 

  18. Rosenberg SA et al. Immunologic and therapeutic evaluation of a synthetic tumor associated peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998; 4: 321–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iezzi G, Karjalainen K, Lanzavecchia A . The duration of antigenic stimulation determines the fate of naive and effector T-cells. Immunity 1998; 8: 89–95.

    Article  CAS  PubMed  Google Scholar 

  20. Lanzavecchia A, Iezzi G, Viola A . From TCR engagement to T-cell activation: a kinetic view of T cell behavior. Cell 1999; 96: 1–4.

    Article  CAS  PubMed  Google Scholar 

  21. Larsson M et al. Requirement of mature dendritic cells for efficient activation of influenza A-specific memory CD8+ T cells. J Immunol 2000; 165: 1182–1190.

    Article  CAS  PubMed  Google Scholar 

  22. Steinman RM & Dhodapkar M . Active immunization against cancer with dendritic cells: the near future. Int J Cancer 2001; 94: 459–473.

    Article  CAS  PubMed  Google Scholar 

  23. Jonuleit H et al. A comparison of two types of dendritic cells as adjuvants for the induction of melanoma-specific T cell responses in humans following intranodal injection. Int J Cancer 2001; 93: 243–251.

    Article  CAS  PubMed  Google Scholar 

  24. Engelmayer J et al. Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J Immunol 1999; 163: 6762–6768.

    CAS  PubMed  Google Scholar 

  25. Smith GL et al. Vaccinia virus immune evasion. Immunol Rev 1997; 159: 137–154.

    Article  CAS  PubMed  Google Scholar 

  26. Tsujisaki M et al. Fine specificity and idiotype diversity of the murine anti-HLA- A2, A28 monoclonal antibodies CR11-351 and KS1. Transplantation 1988; 45: 632–639.

    Article  CAS  PubMed  Google Scholar 

  27. Bettinotti M et al. Stringent allele/epitope requirements for MART-1/Melan A immunodominance: implications for peptide-based immunotherapy. J Immunol 1998; 161: 877–889.

    CAS  PubMed  Google Scholar 

  28. Nielsen MB et al. Status of activation of circulating vaccine-elicited CD8+ T cells. J Immunol 2000; 165: 2287–2296.

    Article  CAS  PubMed  Google Scholar 

  29. Monsurro' V et al. Functional heterogeneity of vaccine-induced CD8+ T cells. J Immunol 2002; 168: 5933–5942.

    Article  CAS  Google Scholar 

  30. Dudley ME et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 2001; 24: 363–373.

    Article  CAS  PubMed  Google Scholar 

  31. Dudley ME, Nishimura MI, Holt AKC, Rosenberg SA . Anti-tumor immunization with a minimal peptide epitope (G9-209-2M) leads to a functionally heterogeneous CTL response. J Immunother 1999; 22: 288–298.

    Article  CAS  PubMed  Google Scholar 

  32. Lee KH et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 1999; 163: 6292–6300.

    CAS  PubMed  Google Scholar 

  33. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell [see comments]. Nature 1998; 393: 474–478.

    Article  CAS  PubMed  Google Scholar 

  34. Gallucci S, Lolkema M, Matzinger P . Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999; 5: 1249–1255.

    Article  CAS  PubMed  Google Scholar 

  35. Lapointe R et al. Retrovirally transduced human dendritic cells can generate T cells recognizing multiple MHC class I and class II epitopes from the melanoma antigen glycoprotein 100. J Immunol 2001; 167: 4758–4764.

    Article  CAS  PubMed  Google Scholar 

  36. Parmiani G et al. Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 2002; 94: 805–818.

    Article  CAS  PubMed  Google Scholar 

  37. Kim CJ, Parkinson DR, Marincola FM . Immunodominance across the HLA polymorphism: implications for cancer immunotherapy. J Immunother 1997; 21: 1–16.

    Article  CAS  Google Scholar 

  38. Marincola FM, Jaffe EM, Hicklin DJ, Ferrone S . Escape of human solid tumors from T cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000; 74: 181–273.

    Article  CAS  PubMed  Google Scholar 

  39. Ferrone S, Marincola FM . Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol Today 1995; 16: 487–494.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenberg SA et al. Immunization of patients with metastatic melanoma using recombinant adenoviruses encoding the MART-1 or gp100 melanoma antigens. J Natl Cancer Inst 1998; 90: 1894–1899.

    Article  CAS  PubMed  Google Scholar 

  41. Restifo NP, Rosenberg SA . Developing recombinant and synthetic vaccines for the treatment of melanoma. Curr Opin Oncol 1999; 11: 50–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coller HA et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling and adhesion. Proc Natl Acad Sci USA 2000; 28: 3260–3265.

    Article  Google Scholar 

  43. Wang R et al. Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci USA 2001; 98: 10817–10822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Janetzki S et al. Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 2000; 88: 232–238.

    Article  CAS  PubMed  Google Scholar 

  45. Hsueh EC et al. Active immunotherapy by reinduction with a polyvalent allogeneic cell vaccine correlates with improved survival in recurrent metastatic melanoma. Ann Surg Oncol 2002; 9: 486–492.

    Article  PubMed  Google Scholar 

  46. Shiku H et al. Development of a cancer vaccine: peptides, proteins and DNA. Cancer Chemother Pharmacol 2000; 46: S77–S82.

    Article  CAS  PubMed  Google Scholar 

  47. Kirk CJ, Mule JJ . Gene-modified dendritic cells for use in tumor vaccines. Hum Gene Ther 2000; 11: 797–806.

    Article  CAS  PubMed  Google Scholar 

  48. Yang S et al. Dendritic cells infected with a vaccinia vector carrying the human gp100 gene simultaneously present multiple specificities and elicit high-affinity T cells reactive to multiple epitopes and restricted by HLA-A2 and -A3. J Immunol 2000; 164: 4204–4211.

    Article  CAS  PubMed  Google Scholar 

  49. Prabakaran I et al. Mature CD83(+) dendritic cells infected with recombinant gp100 vaccinia virus stimulate potent antimelanoma T cells. Ann Surg Oncol 2002; 9: 411–418.

    PubMed  Google Scholar 

  50. Smith SG et al. Human dendritic cells genetically engineered to express a melanoma polyepitope DNA vaccine induce multiple cytotoxic T cell responses. Clin Cancer Res 2001; 7: 4253–4261.

    CAS  PubMed  Google Scholar 

  51. Cella M et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T-cell stimulatory capacity: T-T help via APC activation. J Exp Med 1996; 184: 747–752.

    Article  CAS  PubMed  Google Scholar 

  52. Monsurro' V et al. Kinetics of TCR use in response to repeated epitope-specific immunization. J Immunol 2001; 166: 5817–5825.

    Article  CAS  Google Scholar 

  53. Granucci F et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2001; 2: 882–888.

    Article  CAS  PubMed  Google Scholar 

  54. Andrews DM et al. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2001; 2: 1077–1084.

    Article  CAS  PubMed  Google Scholar 

  55. Sauter B et al. Consequences of cell death: exposure to necrotic tumor cells, but no primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 2000; 191: 434.

    Article  Google Scholar 

  56. Larsson M et al. Efficiency of cross presentation of vaccinia virus-derived antigens by human dendritic cells. Eur J Immunol 2001; 31: 3432–3442.

    Article  CAS  PubMed  Google Scholar 

  57. Sercarz EE et al. Dominance and crypticity of T cell antigenic determinants. Annu Rev Immunol 1993; 11: 729–766.

    Article  CAS  PubMed  Google Scholar 

  58. Niedermann G et al. Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 1995; 2: 289–299.

    Article  CAS  PubMed  Google Scholar 

  59. Valmori D et al. Induction of potent antitumor CTL responses by recombinant vaccinia encoding a melan-A peptide analogue. J Immunol 2000; 164: 1125–1131.

    Article  CAS  PubMed  Google Scholar 

  60. Speiser DE et al. In vivo activation of melanoma-specific CD8(+)T cells by endogenous tumor antigen and peptide vaccines. A comparison to virus-specific T cells. Eur J Immunol 2002; 32: 731–741.

    Article  CAS  PubMed  Google Scholar 

  61. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and down-regulated by tumor necrosis factor alpha. J Exp Med 1994; 179: 1109–1118.

    Article  CAS  PubMed  Google Scholar 

  62. Lapointe R et al. Human dendritic cells require multiple activation signals for the efficient generation of tumor antigen-specific T lymphocytes. Eur J Immunol 2000; 30: 3291–3298.

    Article  CAS  PubMed  Google Scholar 

  63. Cormier JN et al. Heterogeneous expression of melanoma-associated antigens (MAA) and HLA-A2 in metastatic melanoma in vivo. Int J Cancer 1998; 75: 517–524.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dr-Mildred-Scheel-Stiftung für Krebsforschung, Deutsche Krebshilfe (D.N.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagorsen, D., Panelli, M., Dudley, M. et al. Biased epitope selection by recombinant vaccinia-virus (rVV)-infected mature or immature dendritic cells. Gene Ther 10, 1754–1765 (2003). https://doi.org/10.1038/sj.gt.3302066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302066

Keywords

This article is cited by

Search

Quick links