Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Gene therapy with drug resistance genes

Abstract

A major side effect of cancer chemotherapy is myelosuppression. Expression of drug-resistance genes in hematopoietic stem cells (HSC) using gene transfer methodologies holds the promise of overcoming marrow toxicity in cancer chemotherapy. Adequate protection of marrow cells in cancer patients from myelotoxicity in this way would permit the use of escalating doses of chemotherapy for eradicating residual disease. A second use of drug-resistance genes is for coexpression with a therapeutic gene in HSCs to provide a selection advantage to gene-modified cells. In this review, we discuss several drug resistance genes, which are well suited for in vivo selection as well as other newer candidate genes with potential for use in this manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Laufs S, Buss EC, Zeller WJ, Fruehauf S . Transfer of drug resistance genes in hematopoietic progenitors for chemoprotection: is it still an option? Drug Resist Updat 2003; 6: 57–69.

    CAS  PubMed  Google Scholar 

  2. Flasshove M, Moritz T, Bardenheuer W, Seeber S . Hematoprotection by transfer of drug-resistance genes. Acta Haematol 2003; 110: 93–106.

    CAS  PubMed  Google Scholar 

  3. Milsom MD, Fairbairn LJ . Protection and selection for gene therapy in the hematopoietic system. J Gene Med 2004; 6: 133–146.

    CAS  PubMed  Google Scholar 

  4. Douglas J, Kelly P, Evans JT, Garcia JV . Efficient transduction of human lymphocytes and CD34+ cells via human immunodeficiency virus-based gene transfer vectors. Hum Gene Ther 1999; 10: 935–945.

    CAS  PubMed  Google Scholar 

  5. Case SS, Price MA, Jordan CT, Yu XJ, Wang L, Bauer G et al. Stable transduction of quiescent CD34(+)CD38(−) human hematopoietic cells by HIV-1-based lentiviral vectors. Proc Natl Acad Sci USA 1999; 96: 2988–2993.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis PF, Emerman M . Passage through mitosis is required for oncoretroviruses but not for the human immunodeficiency virus. J Virol 1994; 68: 510–516.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS . HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 1990; 61: 213–222.

    CAS  PubMed  Google Scholar 

  8. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288: 669–672.

    CAS  PubMed  Google Scholar 

  9. Cavazzana-Calvo M, Hacein-Bey S, Yates F, de Villartay JP, Le Deist F, Fischer A . Gene therapy of severe combined immunodeficiencies. J Gene Med 2001; 3: 201–206.

    CAS  PubMed  Google Scholar 

  10. Hacein-Bey-Abina S, Fischer A, Cavazzana-Calvo M . Gene therapy of X-linked severe combined immunodeficiency. Int J Hematol 2002; 76: 295–298.

    CAS  PubMed  Google Scholar 

  11. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ . Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11, and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 1996; 87: 30–37.

    CAS  PubMed  Google Scholar 

  12. Glimm H, Oh IH, Eaves CJ . Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood 2000; 96: 4185–4193.

    CAS  PubMed  Google Scholar 

  13. Sawai N, Persons DA, Zhou S, Lu T, Sorrentino BP . Reduction in hematopoietic stem cell numbers with in vivo drug selection can be partially abrogated by HOXB4 gene expression. Mol Ther 2003; 8: 376–384.

    CAS  PubMed  Google Scholar 

  14. Milsom MD, Woolford LB, Margison GP, Humphries RK, Fairbairn LJ . Enhanced in vivo selection of bone marrow cells by retroviral-mediated coexpression of mutant O6-methylguanine-DNA-methyltransferase and HOXB4. Mol Ther 2004; 10: 862–873.

    CAS  PubMed  Google Scholar 

  15. Sauvageau G, Thorsteinsdottir U, Eaves CJ, Lawrence HJ, Largman C, Lansdorp PM et al. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive Populations in vitro and in vivo. Genes Dev 1995; 9: 1753–1765.

    CAS  PubMed  Google Scholar 

  16. Antonchuk J, Sauvageau G, Humphries RK . HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol 2001; 29: 1125–1134.

    CAS  PubMed  Google Scholar 

  17. Antonchuk J, Sauvageau G, Humphries RK . HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 2002; 109: 39–45.

    CAS  PubMed  Google Scholar 

  18. Neff T, Blau CA . Pharmacologically regulated cell therapy. Blood 2001; 97: 2535–2540.

    CAS  PubMed  Google Scholar 

  19. Williams DA, Hsieh K, DeSilva A, Mulligan RC . Protection of bone marrow transplant recipients from lethal doses of methotrexate by the generation of methotrexate-resistant bone marrow. J Exp Med 1987; 166: 210–218.

    CAS  PubMed  Google Scholar 

  20. Corey CA, DeSilva AD, Holland CA, Williams DA . Serial transplantation of methotrexate-resistant bone marrow: protection of murine recipients from drug toxicity by progeny of transduced stem cells. Blood 1990; 75: 337–343.

    CAS  PubMed  Google Scholar 

  21. Zhao SC, Li MX, Banerjee D, Schweitzer BI, Mineishi S, Gilboa E et al. Long-term protection of recipient mice from lethal doses of methotrexate by marrow infected with a double-copy vector retrovirus containing a mutant dihydrofolate reductase. Cancer Gene Ther 1994; 1: 27–33.

    CAS  PubMed  Google Scholar 

  22. Podda S, Ward M, Himelstein A, Richardson C, de la Flor-Weiss E, Smith L et al. Transfer and expression of the human multiple drug resistance gene into live mice. Proc Natl Acad Sci USA 1992; 89: 9676–9680.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 1992; 257: 99–103.

    CAS  PubMed  Google Scholar 

  24. Allay JA, Dumenco LL, Koc ON, Liu L, Gerson SL . Retroviral transduction and expression of the human alkyltransferase cDNA provides nitrosourea resistance to hematopoietic cells. Blood 1995; 85: 3342–3351.

    CAS  PubMed  Google Scholar 

  25. Harris LC, Marathi UK, Edwards CC, Houghton PJ, Srivastava DK, Vanin EF et al. Retroviral transfer of a bacterial alkyltransferase gene into murine bone marrow protects against chloroethylnitrosourea cytotoxicity. Clin Cancer Res 1995; 1: 1359–1368.

    CAS  PubMed  Google Scholar 

  26. Moritz T, Mackay W, Glassner BJ, Williams DA, Samson L . Retrovirus-mediated expression of a DNA repair protein in bone marrow protects hematopoietic cells from nitrosourea-induced toxicity in vitro and in vivo. Cancer Res 1995; 55: 2608–2614.

    CAS  PubMed  Google Scholar 

  27. Allay JA, Persons DA, Galipeau J, Riberdy JM, Ashmun RA, Blakley RL et al. In vivo selection of retrovirally transduced hematopoietic stem cells. Nat Med 1998; 4: 1136–1143.

    CAS  PubMed  Google Scholar 

  28. Matsunaga T, Sakamaki S, Kuga T, Kuroda H, Kusakabe T, Akiyama T et al. GST-pi gene-transduced hematopoietic progenitor cell transplantation overcomes the bone marrow toxicity of cyclophosphamide in mice. Hum Gene Ther 2000; 11: 1671–1681.

    CAS  PubMed  Google Scholar 

  29. Ragg S, Xu-Welliver M, Bailey J, D'Souza M, Cooper R, Chandra S et al. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res 2000; 60: 5187–5195.

    CAS  PubMed  Google Scholar 

  30. Persons DA, Allay ER, Sawai N, Hargrove PW, Brent TP, Hanawa H et al. Successful treatment of murine beta-thalassemia using in vivo selection of genetically modified, drug-resistant hematopoietic stem cells. Blood 2003; 102: 506–513.

    CAS  PubMed  Google Scholar 

  31. Hock RA, Miller AD . Retrovirus-mediated transfer and expression of drug resistance genes in human haematopoietic progenitor cells. Nature 1986; 320: 275–277.

    CAS  PubMed  Google Scholar 

  32. Kwok WW, Schuening F, Stead RB, Miller AD . Retroviral transfer of genes into canine hemopoietic progenitor cells in culture: a model for human gene therapy. Proc Natl Acad Sci USA 1986; 83: 4552–4555.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Simonsen CC, Levinson AD . Isolation and expression of an altered mouse dihydrofolate reductase cDNA. Proc Natl Acad Sci USA 1983; 80: 2495–2499.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chunduru SK, Cody V, Luft JR, Pangborn W, Appleman JR, Blakley RL . Methotrexate-resistant variants of human dihydrofolate reductase. Effects of Phe31 substitutions. J Biol Chem 1994; 269: 9547–9555.

    CAS  PubMed  Google Scholar 

  35. Lewis WS, Cody V, Galitsky N, Luft JR, Pangborn W, Chunduru SK et al. Methotrexate-resistant variants of human dihydrofolate reductase with substitutions of leucine 22. Kinetics, crystallography, and potential as selectable markers. J Biol Chem 1995; 270: 5057–5064.

    CAS  PubMed  Google Scholar 

  36. Ercikan-Abali EA, Mineishi S, Tong Y, Nakahara S, Waltham MC, Banerjee D et al. Active site-directed double mutants of dihydrofolate reductase. Cancer Res 1996; 56: 4142–4145.

    CAS  PubMed  Google Scholar 

  37. Patel M, Sleep SE, Lewis WS, Spencer HT, Mareya SM, Sorrentino BP et al. Comparison of the protection of cells from antifolates by transduced human dihydrofolate reductase mutants. Hum Gene Ther 1997; 8: 2069–2077.

    CAS  PubMed  Google Scholar 

  38. Blau CA, Neff T, Papayannopoulou T . The hematological effects of folate analogs: implications for using the dihydrofolate reductase gene for in vivo selection. Hum Gene Ther 1996; 7: 2069–2078.

    CAS  PubMed  Google Scholar 

  39. Allay JA, Spencer HT, Wilkinson SL, Belt JA, Blakley RL, Sorrentino BP . Sensitization of hematopoietic stem and progenitor cells to trimetrexate using nucleoside transport inhibitors. Blood 1997; 90: 3546–3554.

    CAS  PubMed  Google Scholar 

  40. Persons DA, Allay JA, Bonifacino A, Lu T, Agricola B, Metzger ME et al. Transient in vivo selection of transduced peripheral blood cells using antifolate drug selection in Rhesus macaques that received transplants with hematopoietic stem cells expressing dihydrofolate reductase vectors. Blood 2004; 103: 796–803.

    CAS  PubMed  Google Scholar 

  41. Ambudkar SV, Kimchi-Sarfaty C, Sauna ZE, Gottesman MM . P-glycoprotein: from genomics to mechanism. Oncogene 2003; 22: 7468–7485.

    CAS  PubMed  Google Scholar 

  42. Mickisch GH, Licht T, Merlino GT, Gottesman MM, Pastan I . Chemotherapy and chemosensitization of transgenic mice which express the human multidrug resistance gene in bone marrow: efficacy, potency, and toxicity. Cancer Res 1991; 51: 5417–5424.

    CAS  PubMed  Google Scholar 

  43. Mickisch GH, Aksentijevich I, Schoenlein PV, Goldstein LJ, Galski H, Stahle C et al. Transplantation of bone marrow cells from transgenic mice expressing the human MDR1 gene results in long-term protection against the myelosuppressive effect of chemotherapy in mice. Blood 1992; 79: 1087–1093.

    CAS  PubMed  Google Scholar 

  44. Hanania EG, Fu S, Roninson I, Zu Z, Deisseroth AB . Resistance to taxol chemotherapy produced in mouse marrow cells by safety-modified retroviruses containing a human MDR-1 transcription unit. Gene Therapy 1995; 2: 279–284.

    CAS  PubMed  Google Scholar 

  45. Loo TW, Clarke DM . Functional consequences of glycine mutations in the predicted cytoplasmic loops of P-glycoprotein. J Biol Chem 1994; 269: 7243–7248.

    CAS  PubMed  Google Scholar 

  46. Galipeau J, Benaim E, Spencer HT, Blakley RL, Sorrentino BP . A bicistronic retroviral vector for protecting hematopoietic cells against antifolates and P-glycoprotein effluxed drugs. Hum Gene Ther 1997; 8: 1773–1783.

    CAS  PubMed  Google Scholar 

  47. Suzuki M, Sugimoto Y, Tsuruo T . Efficient protection of cells from the genotoxicity of nitrosoureas by the retrovirus-mediated transfer of human O6-methylguanine-DNA methyltransferase using bicistronic vectors with human multidrug resistance gene 1. Mutat Res 1998; 401: 133–141.

    CAS  PubMed  Google Scholar 

  48. Jelinek J, Rafferty JA, Cmejla R, Hildinger M, Chinnasamy D, Lashford LS et al. A novel dual function retrovirus expressing multidrug resistance 1 and O6-alkylguanine-DNA-alkyltransferase for engineering resistance of haemopoietic progenitor cells to multiple chemotherapeutic agents. Gene Therapy 1999; 6: 1489–1493.

    CAS  PubMed  Google Scholar 

  49. Wang JS, Fang Q, Sun DJ, Chen J, Zhou XL, Lin GW et al. Genetic modification of hematopoietic progenitor cells for combined resistance to 4-hydroperoxycyclophosphamide, vincristine, and daunorubicin. Acta Pharmacol Sin 2001; 22: 949–955.

    CAS  PubMed  Google Scholar 

  50. Sugimoto Y, Tsukahara S, Sato S, Suzuki M, Nunoi H, Malech HL et al. Drug-selected co-expression of P-glycoprotein and gp91 in vivo from an MDR1-bicistronic retrovirus vector Ha-MDR-IRES-gp91. J Gene Med 2003; 5: 366–376.

    CAS  PubMed  Google Scholar 

  51. Licht T, Haskins M, Henthorn P, Kleiman SE, Bodine DM, Whitwam T et al. Drug selection with paclitaxel restores expression of linked IL-2 receptor gamma-chain and multidrug resistance (MDR1) transgenes in canine bone marrow. Proc Natl Acad Sci USA 2002; 99: 3123–3128.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chaudhary PM, Roninson IB . Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66: 85–94.

    CAS  PubMed  Google Scholar 

  53. Sorrentino BP, McDonagh KT, Woods D, Orlic D . Expression of retroviral vectors containing the human multidrug resistance 1 cDNA in hematopoietic cells of transplanted mice. Blood 1995; 86: 491–501.

    CAS  PubMed  Google Scholar 

  54. Bunting KD, Galipeau J, Topham D, Benaim E, Sorrentino BP . Transduction of murine bone marrow cells with an MDR1 vector enables ex vivo stem cell expansion, but these expanded grafts cause a myeloproliferative syndrome in transplanted mice. Blood 1998; 92: 2269–2279.

    CAS  PubMed  Google Scholar 

  55. Cowan KH, Moscow JA, Huang H, Zujewski JA, O'Shaughnessy J, Sorrentino B et al. Paclitaxel chemotherapy after autologous stem-cell transplantation and engraftment of hematopoietic cells transduced with a retrovirus containing the multidrug resistance complementary DNA (MDR1) in metastatic breast cancer patients. Clin Cancer Res 1999; 5: 1619–1628.

    CAS  PubMed  Google Scholar 

  56. Devereux S, Corney C, Macdonald C, Watts M, Sullivan A, Goldstone AH et al. Feasibility of multidrug resistance (MDR-1) gene transfer in patients undergoing high-dose therapy and peripheral blood stem cell transplantation for lymphoma. Gene Therapy 1998; 5: 403–408.

    CAS  PubMed  Google Scholar 

  57. Hanania EG, Giles RE, Kavanagh J, Fu SQ, Ellerson D, Zu Z et al. Results of MDR-1 vector modification trial indicate that granulocyte/macrophage colony-forming unit cells do not contribute to posttransplant hematopoietic recovery following intensive systemic therapy. Proc Natl Acad Sci USA 1996; 93: 15346–15351.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hesdorffer C, Ayello J, Ward M, Kaubisch A, Vahdat L, Balmaceda C et al. Phase I trial of retroviral-mediated transfer of the human MDR1 gene as marrow chemoprotection in patients undergoing high-dose chemotherapy and autologous stem-cell transplantation. J Clin Oncol 1998; 16: 165–172.

    CAS  PubMed  Google Scholar 

  59. Moscow JA, Huang H, Carter C, Hines K, Zujewski J, Cusack G et al. Engraftment of MDR1 and NeoR gene-transduced hematopoietic cells after breast cancer chemotherapy. Blood 1999; 94: 52–61.

    CAS  PubMed  Google Scholar 

  60. Rahman Z, Kavanagh J, Champlin R, Giles R, Hanania E, Fu S et al. Chemotherapy immediately following autologous stem-cell transplantation in patients with advanced breast cancer. Clin Cancer Res 1998; 4: 2717–2721.

    CAS  PubMed  Google Scholar 

  61. Abonour R, Williams DA, Einhorn L, Hall KM, Chen J, Coffman J et al. Efficient retrovirus-mediated transfer of the multidrug resistance 1 gene into autologous human long-term repopulating hematopoietic stem cells. Nat Med 2000; 6: 652–658.

    CAS  PubMed  Google Scholar 

  62. Modlich U, Kustikova OS, Schmidt M, Rudolph C, Meyer J, Li Z et al. Leukemias following retroviral transfer of multidrug resistance 1 (MDR1) are driven by combinatorial insertional mutagenesis. Blood 2005; 105: 4235–4246.

    CAS  PubMed  Google Scholar 

  63. van Helvoort A, Smith AJ, Sprong H, Fritzsche I, Schinkel AH, Borst P et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 1996; 87: 507–517.

    CAS  PubMed  Google Scholar 

  64. Lala P, Ito S, Lingwood CA . Retroviral transfection of Madin-Darby canine kidney cells with human MDR1 results in a major increase in globotriaosylceramide and 10(5)- to 10(6)-fold increased cell sensitivity to verocytotoxin. Role of p-glycoprotein in glycolipid synthesis. J Biol Chem 2000; 275: 6246–6251.

    CAS  PubMed  Google Scholar 

  65. Jansen M, Sorg UR, Ragg S, Flasshove M, Seeber S, Williams DA et al. Hematoprotection and enrichment of transduced cells in vivo after gene transfer of MGMT(P140K) into hematopoietic stem cells. Cancer Gene Ther 2002; 9: 737–746.

    CAS  PubMed  Google Scholar 

  66. Sawai N, Zhou S, Vanin EF, Houghton P, Brent TP, Sorrentino BP . Protection and in vivo selection of hematopoietic stem cells using temozolomide, O6-benzylguanine, and an alkyltransferase-expressing retroviral vector. Mol Ther 2001; 3: 78–87.

    CAS  PubMed  Google Scholar 

  67. Gerson SL, Phillips W, Kastan M, Dumenco LL, Donovan C . Human CD34+ hematopoietic progenitors have low, cytokine-unresponsive O6-alkylguanine-DNA alkyltransferase and are sensitive to O6-benzylguanine plus BCNU. Blood 1996; 88: 1649–1655.

    CAS  PubMed  Google Scholar 

  68. Allay JA, Davis BM, Gerson SL . Human alkyltransferase-transduced murine myeloid progenitors are enriched in vivo by BCNU treatment of transplanted mice. Exp Hematol 1997; 25: 1069–1076.

    CAS  PubMed  Google Scholar 

  69. Dolan ME, Mitchell RB, Mummert C, Moschel RC, Pegg AE . Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res 1991; 51: 3367–3372.

    CAS  PubMed  Google Scholar 

  70. Pegg AE, Boosalis M, Samson L, Moschel RC, Byers TL, Swenn K et al. Mechanism of inactivation of human O6-alkylguanine-DNA alkyltransferase by O6-benzylguanine. Biochemistry 1993; 32: 11998–12006.

    CAS  PubMed  Google Scholar 

  71. Crone TM, Pegg AE . A single amino acid change in human O6-alkylguanine-DNA alkyltransferase decreasing sensitivity to inactivation by O6-benzylguanine. Cancer Res 1993; 53: 4750–4753.

    CAS  PubMed  Google Scholar 

  72. Crone TM, Goodtzova K, Edara S, Pegg AE . Mutations in human O6-alkylguanine-DNA alkyltransferase imparting resistance to O6-benzylguanine. Cancer Res 1994; 54: 6221–6227.

    CAS  PubMed  Google Scholar 

  73. Xu-Welliver M, Kanugula S, Pegg AE . Isolation of human O6-alkylguanine-DNA alkyltransferase mutants highly resistant to inactivation by O6-benzylguanine. Cancer Res 1998; 58: 1936–1945.

    CAS  PubMed  Google Scholar 

  74. Zaboikin M, Srinivasakumar N, Zaboikina T, Schuening F . Cloning and expression of canine O6-methylguanine-DNA methyltransferase in target cells, using gammaretroviral and lentiviral vectors. Hum Gene Ther 2004; 15: 383–392.

    CAS  PubMed  Google Scholar 

  75. Neff T, Horn PA, Peterson LJ, Thomasson BM, Thompson J, Williams DA et al. Methylguanine methyltransferase-mediated in vivo selection and chemoprotection of allogeneic stem cells in a large-animal model. J Clin Invest 2003; 112: 1581–1588.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Neff T, Beard BC, Peterson LJ, Anandakumar P, Thompson J, Kiem HP . Polyclonal chemoprotection against temozolomide in a large-animal model of drug resistance gene therapy. Blood 2005; 105: 997–1002.

    CAS  PubMed  Google Scholar 

  77. Hayes JD, Flanagan JU, Jowsey IR . Glutathione transferases. Annu Rev Pharmacol Toxicol 2005; 45: 51–88.

    CAS  PubMed  Google Scholar 

  78. Schecter RL, Alaoui-Jamali MA, Woo A, Fahl WE, Batist G . Expression of a rat glutathione-S-transferase complementary DNA in rat mammary carcinoma cells: impact upon alkylator-induced toxicity. Cancer Res 1993; 53: 4900–4906.

    CAS  PubMed  Google Scholar 

  79. Czerwinski M, Kiem HP, Slattery JT . Human CD34+ cells do not express glutathione S-transferases alpha. Gene Therapy 1997; 4: 268–270.

    CAS  PubMed  Google Scholar 

  80. Greenbaum M, Letourneau S, Assar H, Schecter RL, Batist G, Cournoyer D . Retrovirus-mediated gene transfer of rat glutathione S-transferase Yc confers alkylating drug resistance in NIH 3T3 mouse fibroblasts. Cancer Res 1994; 54: 4442–4447.

    CAS  PubMed  Google Scholar 

  81. Letourneau S, Greenbaum M, Cournoyer D . Retrovirus-mediated gene transfer of rat glutathione S-transferase Yc confers in vitro resistance to alkylating agents in human leukemia cells and in clonogenic mouse hematopoietic progenitor cells. Hum Gene Ther 1996; 7: 831–840.

    CAS  PubMed  Google Scholar 

  82. Kuga T, Sakamaki S, Matsunaga T, Hirayama Y, Kuroda H, Takahashi Y et al. Fibronectin fragment-facilitated retroviral transfer of the glutathione-S-transferase pi gene into CD34+ cells to protect them against alkylating agents. Hum Gene Ther 1997; 8: 1901–1910.

    CAS  PubMed  Google Scholar 

  83. Letourneau S, Palerme JS, Delisle JS, Beausejour CM, Momparler RL, Cournoyer D . Coexpression of rat glutathione S-transferase A3 and human cytidine deaminase by a bicistronic retroviral vector confers in vitro resistance to nitrogen mustards and cytosine arabinoside in murine fibroblasts. Cancer Gene Ther 2000; 7: 757–765.

    CAS  PubMed  Google Scholar 

  84. Belzile JP, Karatzas A, Shiu HY, Letourneau S, Palerme JS, Cournoyer D . Increased resistance to nitrogen mustards and antifolates following in vitro selection of murine fibroblasts and primary hematopoietic cells transduced with a bicistronic retroviral vector expressing the rat glutathione S-transferase A3 and a mutant dihydrofolate reductase. Cancer Gene Ther 2003; 10: 637–646.

    CAS  PubMed  Google Scholar 

  85. Sreerama L, Sladek NE . Class 1 and class 3 aldehyde dehydrogenase levels in the human tumor cell lines currently used by the National Cancer Institute to screen for potentially useful antitumor agents. Adv Exp Med Biol 1997; 414: 81–94.

    CAS  PubMed  Google Scholar 

  86. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J . Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 1990; 75: 1947–1950.

    CAS  PubMed  Google Scholar 

  87. Storms RW, Trujillo AP, Springer JB, Shah L, Colvin OM, Ludeman SM et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci USA 1999; 96: 9118–9123.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Magni M, Shammah S, Schiro R, Mellado W, Dalla-Favera R, Gianni AM . Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood 1996; 87: 1097–1103.

    CAS  PubMed  Google Scholar 

  89. Moreb J, Schweder M, Suresh A, Zucali JR . Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Ther 1996; 3: 24–30.

    CAS  PubMed  Google Scholar 

  90. Bunting KD, Townsend AJ . Protection by transfected rat or human class 3 aldehyde dehydrogenase against the cytotoxic effects of oxazaphosphorine alkylating agents in hamster V79 cell lines. Demonstration of aldophosphamide metabolism by the human cytosolic class 3 isozyme. J Biol Chem 1996; 271: 11891–11896.

    CAS  PubMed  Google Scholar 

  91. Takebe N, Zhao SC, Adhikari D, Mineishi S, Sadelain M, Hilton J et al. Generation of dual resistance to 4-hydroperoxycyclophosphamide and methotrexate by retroviral transfer of the human aldehyde dehydrogenase class 1 gene and a mutated dihydrofolate reductase gene. Mol Ther 2001; 3: 88–96.

    CAS  PubMed  Google Scholar 

  92. Bunting KD, Webb M, Giorgianni F, Galipeau J, Blakley RL, Townsend AJ et al. Coding region-specific destabilization of mRNA transcripts attenuates expression from retroviral vectors containing class 1 aldehyde dehydrogenase cDNAs. Hum Gene Ther 1997; 8: 1531–1543.

    CAS  PubMed  Google Scholar 

  93. Steuart CD, Burke PJ . Cytidine deaminase and the development of resistance to arabinosyl cytosine. Nat New Biol 1971; 233: 109–110.

    CAS  PubMed  Google Scholar 

  94. Yusa K, Oh-hara T, Tsukahara S, Tsuruo T . Human immunodeficiency virus type 1 induces 1-beta-D-arabinofuranosylcytosine resistance in human H9 cell line. J Biol Chem 1992; 267: 16848–16850.

    CAS  PubMed  Google Scholar 

  95. Kufe D, Spriggs D, Egan EM, Munroe D . Relationships among Ara-CTP pools, formation of (Ara-C)DNA, and cytotoxicity of human leukemic cells. Blood 1984; 64: 54–58.

    CAS  PubMed  Google Scholar 

  96. Schroder JK, Kirch C, Flasshove M, Kalweit H, Seidelmann M, Hilger R et al. Constitutive overexpression of the cytidine deaminase gene confers resistance to cytosine arabinoside in vitro. Leukemia 1996; 10: 1919–1924.

    CAS  PubMed  Google Scholar 

  97. Neff T, Blau CA . Forced expression of cytidine deaminase confers resistance to cytosine arabinoside and gemcitabine. Exp Hematol 1996; 24: 1340–1346.

    CAS  PubMed  Google Scholar 

  98. Momparler RL, Eliopoulos N, Bovenzi V, Letourneau S, Greenbaum M, Cournoyer D . Resistance to cytosine arabinoside by retrovirally mediated gene transfer of human cytidine deaminase into murine fibroblast and hematopoietic cells. Cancer Gene Ther 1996; 3: 331–338.

    CAS  PubMed  Google Scholar 

  99. Flasshove M, Frings W, Schroder JK, Moritz T, Schutte J, Seeber S . Transfer of the cytidine deaminase cDNA into hematopoietic cells. Leuk Res 1999; 23: 1047–1053.

    CAS  PubMed  Google Scholar 

  100. Beausejour CM, Eliopoulos N, Momparler L, Le NL, Momparler RL . Selection of drug-resistant transduced cells with cytosine nucleoside analogs using the human cytidine deaminase gene. Cancer Gene Ther 2001; 8: 669–676.

    CAS  PubMed  Google Scholar 

  101. Borst P, Evers R, Kool M, Wijnholds J . A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst 2000; 92: 1295–1302.

    CAS  PubMed  Google Scholar 

  102. Cole SP, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC et al. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 1992; 258: 1650–1654.

    CAS  PubMed  Google Scholar 

  103. Slovak ML, Ho JP, Bhardwaj G, Kurz EU, Deeley RG, Cole SP . Localization of a novel multidrug resistance-associated gene in the HT1080/DR4 and H69AR human tumor cell lines. Cancer Res 1993; 53: 3221–3225.

    CAS  PubMed  Google Scholar 

  104. Zaman GJ, Versantvoort CH, Smit JJ, Eijdems EW, de Haas M, Smith AJ et al. Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res 1993; 53: 1747–1750.

    CAS  PubMed  Google Scholar 

  105. Barrand MA, Heppell-Parton AC, Wright KA, Rabbitts PH, Twentyman PR . A 190-kilodalton protein overexpressed in non-P-glycoprotein-containing multidrug-resistant cells and its relationship to the MRP gene. J Natl Cancer Inst 1994; 86: 110–117.

    CAS  PubMed  Google Scholar 

  106. Krishnamachary N, Center MS . The MRP gene associated with a non-P-glycoprotein multidrug resistance encodes a 190-kDa membrane bound glycoprotein. Cancer Res 1993; 53: 3658–3661.

    CAS  PubMed  Google Scholar 

  107. Grant CE, Valdimarsson G, Hipfner DR, Almquist KC, Cole SP, Deeley RG . Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res 1994; 54: 357–361.

    CAS  PubMed  Google Scholar 

  108. Zaman GJ, Flens MJ, van Leusden MR, de Haas M, Mulder HS, Lankelma J et al. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump. Proc Natl Acad Sci USA 1994; 91: 8822–8826.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. D'Hondt V, Caruso M, Bank A . Retrovirus-mediated gene transfer of the multidrug resistance-associated protein (MRP) cDNA protects cells from chemotherapeutic agents. Hum Gene Ther 1997; 8: 1745–1751.

    CAS  PubMed  Google Scholar 

  110. Machiels JP, Govaerts AS, Guillaume T, Bayat B, Feyens AM, Lenoir E et al. Retrovirus-mediated gene transfer of the human multidrug resistance-associated protein into hematopoietic cells protects mice from chemotherapy-induced leukopenia. Hum Gene Ther 1999; 10: 801–811.

    CAS  PubMed  Google Scholar 

  111. Zaman GJ, Lankelma J, van Tellingen O, Beijnen J, Dekker H, Paulusma C et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci USA 1995; 92: 7690–7694.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Rappa G, Lorico A, Hildinger M, Fodstad O, Baum C . Novel bicistronic retroviral vector expressing gamma-glutamylcysteine synthetase and the multidrug resistance protein 1 (MRP1) protects cells from MRP1-effluxed drugs and alkylating agents. Hum Gene Ther 2001; 12: 1785–1796.

    CAS  PubMed  Google Scholar 

  113. http://clinicaltrials.gov/ct/show/NCT00003567.

  114. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J et al. Murine leukemia induced by retroviral gene marking. Science 2002; 296: 497.

    CAS  PubMed  Google Scholar 

  115. Bonetta L . Leukemia case triggers tighter gene-therapy controls. Nat Med 2002; 8: 1189.

    CAS  PubMed  Google Scholar 

  116. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Schuening.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaboikin, M., Srinivasakumar, N. & Schuening, F. Gene therapy with drug resistance genes. Cancer Gene Ther 13, 335–345 (2006). https://doi.org/10.1038/sj.cgt.7700912

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700912

Keywords

This article is cited by

Search

Quick links