Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Immunobiology of allogeneic peripheral blood mononuclear cells mobilized with granulocyte-colony stimulating factor

Abstract

The use of mobilized peripheral blood (PB) stem cells for autologous transplantation initially generated much enthusiasm because of enhanced engraftment in comparison to marrow stem cells and avoidance of general anesthesia for the donor. Its application to the allogeneic setting seemed inevitable. For obvious ethical reasons, allogeneic donors are mobilized with cytokines only, mainly granulocyte colony-stimulating factor (G-CSF). Results from preliminary studies suggest that in comparison to standard bone marrow transplants, outcomes such as engraftment, host-versus-graft reaction, graft-versus-host disease, graft-versus-leukemia and immunological reconstitution may be different. Surprisingly, G-CSF, previously recognized as a late acting lineage-specific factor for neutrophil production, not only disrupts homeostasis between stem cells and their microenvironment, but also induces significant quantitative and qualitative changes in the accessory cell compartment, affecting lymphocytes, monocytes, natural killer, dendritic, and stromal cells. Furthermore, mobilization of huge numbers of non-professional antigen presenting cells (CD34+ stem cells) amplifies the tolerizing potential of PB stem cell grafts. Thus, G-CSF mobilization provides PB transplants with different immunobiologic properties in comparison to standard bone marrow grafts. Whether these immunobiologic differences will lead to better transplant outcomes remains to be shown through much awaited results of large randomized clinical trials. Bone Marrow Transplantation (2000) 26, 1–16.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kessinger A, Smith DM, Strandjord SE et al. Allogeneic transplantation of blood-derived T cell-depleted hematopoietic stem cells after myeloablative treatment in a patient with acute lymphoblastic leukemia Bone Marrow Transplant 1989 4: 643–646

    CAS  PubMed  Google Scholar 

  2. Dreger P, Suttorp M, Haferlach T et al. Allogeneic granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells for treatment of engraftment failure after bone marrow transplantation (letter) Blood 1993 81: 1404–1407

    CAS  PubMed  Google Scholar 

  3. Link H, Arseniev L, Bahre O et al. Combined transplantation of allogeneic bone marrow and CD34+ blood cells Blood 1995 86: 2500–2508

    CAS  PubMed  Google Scholar 

  4. Gratwohl A, Hermans J, Baldomero H . Blood and marrow transplantation activity in Europe 1995. European group for blood and marrow transplantation (EBMT) Bone Marrow Transplant 1997 19: 407–419

    CAS  PubMed  Google Scholar 

  5. Korbling M, Przepiorka D, Huh YO et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts Blood 1995 85: 1659–1665

    CAS  PubMed  Google Scholar 

  6. Bensinger WI, Weaver CH, Appelbaum FR et al. Transplantation of allogeneic peripheral blood stem cells mobilized by recombinant human granulocyte colony-stimulating factor Blood 1995 85: 1655–1658

    CAS  PubMed  Google Scholar 

  7. Bensinger WI, Clift R, Martin P et al. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation Blood 1996 88: 2794–2800

    CAS  PubMed  Google Scholar 

  8. Waller CF, Bertz H, Wenger MK et al. Mobilization of peripheral blood progenitor cells for allogeneic transplantation: efficacy and toxicity of a high-dose rhG-CSF regimen Bone Marrow Transplant 1996 18: 279–283

    CAS  PubMed  Google Scholar 

  9. Bensinger WI, Buckner CD, Shannon-Dorcy K et al. Transplantation of allogeneic CD34+ peripheral blood stem cells in patients with advanced hematologic malignancy Blood 1996 88: 4132–4138

    CAS  PubMed  Google Scholar 

  10. Corringham RET, Ho AD . Rapid and sustained allogeneic transplantation using immunoselected CD34+-selected peripheral blood progenitor cells mobilized by recombinant granulocyte- and granulocyte–macrophage colony-stimulating factors (letter) Blood 1995 86: 2052–2054

    CAS  PubMed  Google Scholar 

  11. Schmitz N, Bacigalupo A, Labopin M et al. Transplantation of peripheral blood progenitor cells from HLA-identical sibling donors. European Group for Blood and Marrow Transplantation Br J Haematol 1996 95: 715–723

    CAS  PubMed  Google Scholar 

  12. Chan KW, Mullen CA, Korbling M . Allogeneic peripheral blood stem cell transplantation for active hemophagocytic lymphohistiocytosis Bone Marrow Transplant 1998 22: 301–302

    CAS  PubMed  Google Scholar 

  13. Urbano-Ispizua A, Rozman C, Martinez C et al. Rapid engraftment without significant graft-versus-host disease after allogeneic blood transplantation of CD34+ selected cells from peripheral blood Blood 1997 89: 3967–3973

    CAS  PubMed  Google Scholar 

  14. Bacigalupo A, Zikos P, Van Lint MT et al. Allogeneic bone marrow or peripheral blood cell transplants in adults with hematologic malignancies: a single-center experience Exp Hematol 1998 26: 409–414

    CAS  PubMed  Google Scholar 

  15. Byrne JL, Haynes AP, Russel NH . Use of hematopoietic growth factors: commentary on the ASCO/ECOG guidelines Blood Rev 1997 11: 16–27

    CAS  PubMed  Google Scholar 

  16. Anderlini P, Korbling M, Dale D et al. Allogeneic blood stem cell transplantation: considerations for donors (editorial) Blood 1997 90: 903–908

    CAS  PubMed  Google Scholar 

  17. Welte K, Gabrilove J, Bronchud MH et al. Filgrastim (r-metHuG-CSF): the first 10 years Blood 1996 88: 1907–1929

    CAS  PubMed  Google Scholar 

  18. Demetri GD, Griffin JD . Granulocyte colony-stimulating factor and its receptor Blood 1991 78: 2791–2808

    CAS  PubMed  Google Scholar 

  19. Tidow N, Welte K . Advances in understanding postreceptor signaling in response to granulocyte colony-stimulating factor Cur Opin Hematol 1997 4: 171–175

    CAS  Google Scholar 

  20. McNiece IK, Briddell RA, Hartley CA, Andrews RG . The role of stem cell factor in mobilization of peripheral blood progenitor cells: synergy with G-CSF Stem Cells 1993 11:: (Suppl.3) 83–88

    Google Scholar 

  21. Dale DC, Liles WC, Summer WR, Nelson S . Review: granulocyte colony-stimulating factor – role and relationships in infectious diseases J Infect Dis 1995 172: 1061–1075

    CAS  PubMed  Google Scholar 

  22. Damiani D, Fanin R, Silvestri F et al. Randomized trial of autologous filgrastim-primed bone marrow transplantation versus filgrastim-mobilized peripheral blood stem cell transplantation in lymphoma patients Blood 1997 90: 36–42

    CAS  PubMed  Google Scholar 

  23. Gyger M, Sahovic E, Aslam M . Randomized trial of autologous filgrastim-primed bone marrow transplantation versus filgrastim-mobilized peripheral blood stem cell transplantation in lymphoma patients (letter) Blood 1998 92: 3489

    CAS  PubMed  Google Scholar 

  24. Johnsen HE . Does recombinant human granulocyte colony-stimulating factor really prime marrow stem cells in mice and humans (letter)? Blood 1999 93: 4446–4449

    CAS  PubMed  Google Scholar 

  25. Veiby OP, Mikhail AA, Snodgrass HR . Growth factors and hematopoietic cells Hematol/Oncol Clin N America 1997 11: 1173–1184

    CAS  Google Scholar 

  26. Ogawa M . Effects of hemopoietic growth factors on stem cells in vitro Hematol/Oncol Clin N America 1989 3: 453–464

    CAS  Google Scholar 

  27. Leary AG, Zeng HQ, Clark SC, Ogawa M . Growth factor requirements for survival in Go and entry into the cell cycle of primitive human hemopoietic progenitors Proc Natl Acad Sci USA 1992 89: 4013–4017

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ogawa M . Differentiation and proliferation of hematopoietic stem cells Blood 1993 81: 2844–2853

    CAS  PubMed  Google Scholar 

  29. Visser JW, Rozemuller H, de Jong MO, Belyavsky A . The expression of cytokine receptors by purified hemopoietic stem cells Stem Cells 1993 11: (Suppl.2) 49–55

    CAS  PubMed  Google Scholar 

  30. McClanahan T, Dalrymple S, Barkett M, Lee F . Hematopoietic growth factor receptor genes as markers of lineage commitment during in vitro development of hematopoietic cells Blood 1993 81: 2903–2915

    CAS  PubMed  Google Scholar 

  31. Dreger P, Haferlach T, Eckstein V et al. G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization and composition of the graft Br J Haematol 1994 87: 609–613

    CAS  PubMed  Google Scholar 

  32. Grigg AP, Roberts AW, Raunow H et al. Optimizing dose and scheduling of filgrastim (granulocyte colony-stimulating factor) for mobilization and collection of peripheral blood progenitor cells in normal volunteers Blood 1995 86: 4437–4445

    CAS  PubMed  Google Scholar 

  33. Tanaka R, Matsudaira T, Tanaka I et al. Kinetics and characteristics of peripheral blood progenitor cells mobilized by G-CSF in normal healthy volunteers Blood 1994 84: (Suppl.1) (Abstr.541a)

    Google Scholar 

  34. Roberts AW, Metcalf D . Noncycling state of peripheral blood progenitor cells mobilized by granulocyte colony-stimulating factor and other cytokines Blood 1995 86: 1600–1605

    CAS  PubMed  Google Scholar 

  35. Lemoli RM, Tafuri A, Fortuna A et al. Cycling status of CD34+ cells mobilized into peripheral blood of healthy donors by recombinant human granulocyte colony-stimulating factor Blood 1997 89: 1189–1196

    CAS  PubMed  Google Scholar 

  36. Uchida N, He D, Friera AM et al. The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood Blood 1997 89: 465–472

    CAS  PubMed  Google Scholar 

  37. Siegert W, Serke S . Cytokine mobilized blood CD34-expressing cells are not cycling (letter) Bone Marrow Transplant 1996 17: 467–470

    CAS  PubMed  Google Scholar 

  38. Donahue RE, Kirby MR, Metzger ME et al. Peripheral blood CD34+ cells differ from bone marrow CD 34+ cells in Thy-1 expression and cell cycle status in nonhuman primates mobilized or not mobilized with granulocyte colony-stimulating factor and/or stem cell factor Blood 1996 87: 1644–1653

    CAS  PubMed  Google Scholar 

  39. Lyman SD, James L, Vanden Bos T et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells Cell 1993 75: 1157–1167

    CAS  PubMed  Google Scholar 

  40. Williams DE, Eisenman J, Baird A et al. Identification of a ligand for the c-kit ptoto-oncogene Cell 1990 63: 167–174

    CAS  PubMed  Google Scholar 

  41. Sitnicka E, Lin N, Priestly Gv et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells Blood 1996 87: 4998–5005

    CAS  PubMed  Google Scholar 

  42. Neben S, Marcus K, Mauch P . Mobilization of hematopoietic stem and progenitor cell subpopulations from the marrow to the blood of mice following cyclophosphamide and/or granulocyte colony-stimulating factor Blood 1993 81: 1960–1967

    CAS  PubMed  Google Scholar 

  43. Brasel K, McKenna HJ, Charrier K et al. Flt3 ligand synergizes with granulocyte–macrophage colony stimulating factor or granulocyte colony stimulating factor to mobilize hematopoietic progenitor cells into the peripheral blood of mice Blood 1997 90: 3781–3788

    CAS  PubMed  Google Scholar 

  44. Bodine D, Seidel N, Orlic D . Bone marrow collected 14 days after in vivo administration of granulocyte colony-stimulating factor and stem cell factor in mice has 10 fold more repopulating ability than untreated marrow Blood 1996 88: 89–97

    CAS  PubMed  Google Scholar 

  45. Mandelam RK, Vento CA, Stiff PJ et al. Stem and progenitor cell content and ex vivo expansion potential of human bone marrow primed in vivo with G-CSF Blood 1997 90: (Suppl.1) (Abstr.344b)

    Google Scholar 

  46. Martinez C, Urbano-Ispizua A, Rozman M et al. Effects of short-term administration of G-CSF (filgrastim) on bone marrow progenitor cells: analysis of serial marrow samples from normal donors Bone Marrow Transplant 1999 23: 15–19

    CAS  PubMed  Google Scholar 

  47. Dicke KA, Hood DL, Arneson M et al. Effects of short-term in vivo administration of G-CSF on bone marrow prior to harvesting Exp Hematol 1997 25: 34–38

    CAS  PubMed  Google Scholar 

  48. Papayannopoulou T, Nakamoto B . Peripheralization of hemopoietic progenitors in primates treated with anti-VLA-4 integrin Proc Natl Acad Sci USA 1993 90: 9374–9378

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liesveld JL, Winslow JM, Frediani KE et al. Expression of integrins and examination of their adhesive function in normal and leukemic hematopoietic cells Blood 1993 81: 112–121

    CAS  PubMed  Google Scholar 

  50. Lund-Johansen F, Terstappen LWMM . Differential expression of cell adhesion molecules during granulocyte maturation Leuk Biol 1993 54: 47–55

    CAS  Google Scholar 

  51. Kerst JM, Sanders JB, Slaper-Cortenbach ICM et al. α4β1 and α5β1 are differentially expressed during myelopoiesis and mediate the adherence of CD34+ cells to fibrinonectin in an activation-dependent way Blood 1993 81: 344–351

    CAS  PubMed  Google Scholar 

  52. Verfaillie CM, McCarthy JB, McGlave PB . Differentiation of primitive human multipotent hematopoietic progenitors into single lineage clonogenic progenitors is accompanied by alterations in their interactions with fibrinonectin J Exp Med 1991 172: 69–79

    Google Scholar 

  53. Verfaillie CM, Benis A, Iida J et al. Adhesion of committed hematopoietic progenitors to synthetic peptides from the C-terminal heparin-binding domain of fibrinonectin: cooperation between α4β1 and the CD44 adhesion receptor Blood 1994 84: 1802–1811

    CAS  PubMed  Google Scholar 

  54. Papayannopoulou T, Craddock C, Nakamoto B et al. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hematopoietic progenitors between bone marrow and spleen Proc Natl Acad Sci USA 1995 92: 9647–9651

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Shimazaki C, Kikuta T, Ashihara E et al. Anti VCAM-1 antibody effectively mobilizes stem and progenitor cells into blood in mice Blood 1997 90: (Suppl.1) (Abstr.253a)

    Google Scholar 

  56. Mohle R, Murea S, Kirsh M, Haas R . Differential expression of L-selectin, VLA-4 and LFA-1 on CD34+ progenitor cells from the bone marrow and peripheral blood during G-CSF enhanced recovery Exp Hematol 1995 23: 1535–1542

    CAS  PubMed  Google Scholar 

  57. Masauzi N, Kobayashi M, Suzuki G et al. Comparative studies of differentiation antigens and adhesion molecules expressed on CD34+ cells staying in the bone marrow with those on CD34+ cells in the peripheral blood mobilized by two different protocols with chemotherapy/rhG-CSF or steady state rhG-CSF Blood 1995 86: (Suppl.1) (Abstr.107a)

    Google Scholar 

  58. Laterveer L, Lindley IJD, Heeemskerk DPM et al. Rapid mobilization of hematopoietic progenitor cells in rhesus monkeys by a single intravenous injection of interleukin-8 Blood 1996 87: 781–788

    CAS  PubMed  Google Scholar 

  59. Elford PR, Cooper PH . Induction of neutrophil-mediated cartilage degradation by interleukin-8 Arthritis Rheum 1991 34: 325–332

    CAS  PubMed  Google Scholar 

  60. Peveri P, Walz A, Dewald B, Baggiolini M . A novel neutrophil-activating factor produced by human mononuclear phagocytes Exp Med 1988 167: 1547–1559

    CAS  Google Scholar 

  61. Masure S, Proost P, Van Damme JO, Opdenakker G . Purification and identification of 91-kDa neutrophil gelatinase. Release by the activating peptide interleukin-8 Eur J Biochem 1991 198: 391–398

    CAS  PubMed  Google Scholar 

  62. Pruijt JFM, Fibbe WE, Laterveer L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by antibodies to the metalloproteinase gelatinase-B Blood 1996 88: (Suppl.1) (Abstr.455a)

    Google Scholar 

  63. Janowska-Wieczorek A, Chang H, Cabuhat ML, Marquez LA . CD34+ progenitor cells mobilized from peripheral blood but not CD34+ cells from normal marrow secrete matrix metalloproteinases (MMP-2 and MMP-9) Blood 1997 90: (Suppl.1) (Abstr.95a)

    Google Scholar 

  64. Mohle R, Haas R, Hunstein W . Expression of adhesion molecules and c-Kit on CD34+ cells: comparison of cytokine-mobilized blood stem cells with normal bone marrow and peripheral blood J Hematother 1993 2: 483–489

    CAS  PubMed  Google Scholar 

  65. Bellucci R, De Propris MS, Buccisano F . Modulation of VLA-4 and L-selectin expression on normal CD34+ cells during mobilization with G-CSF Bone Marrow Transplant 1999 23: 1–8

    CAS  PubMed  Google Scholar 

  66. Horibe T, Itoh Y, Yoshida S et al. Examination of the mechanism of hemopoietic stem cell mobilization by G-CSF using coculture system with human multipotent progenitor cells and mouse stromal cell line MS-5 Blood 1997 90: (Suppl.1) (Abstr.146b)

    Google Scholar 

  67. Liu F, Poursine-Laurent J, Link DC . The granulocyte colony-stimulating factor receptor is required for the mobilization of murine hematopoietic progenitors into peripheral blood by cyclophosphamide or interleukin-8 but not Flt-3 ligand Blood 1997 90: 2522–2528

    CAS  PubMed  Google Scholar 

  68. Sekhsaria S, Fleisher TA, Vowells S . Granulocyte colony-stimulating factor recruitment of CD34+ progenitors to peripheral blood: impaired mobilization in chronic granulomatous disease and adenosine deaminase-deficient severe combined immunodeficiency disease patients Blood 1996 88: 1104–1112

    CAS  PubMed  Google Scholar 

  69. Tjonnfjord GE, Steen R, Evensen SA et al. Characterization of CD34+ peripheral blood cells from healthy adults mobilized by recombinant human granulocyte colony-stimulating factor Blood 1994 84: 2795–2801

    CAS  PubMed  Google Scholar 

  70. To LB, Haylock DN, Dowse T et al. A comparative study of the phenotype and proliferative capacity of peripheral blood (PB) CD34+ cells mobilized by four different protocols and those of steady-phase PB and bone marrow CD34+ cells Blood 1994 84: 2930–2939

    CAS  PubMed  Google Scholar 

  71. Cynshi O, Satoh K, Shimonaka Y et al. Reduced response to granulocyte colony-stimulating factor in W/Wv and Sl/Sld Leukemia 1991 5: 75–77

    CAS  PubMed  Google Scholar 

  72. Papayannopoulou T, Priestley GV, Nakamoto B . Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway Blood 1998 91: 2231–2239

    CAS  PubMed  Google Scholar 

  73. Anrews RG, Singer JW, Bernstein ID . Human hematopoietic precursors in long-term culture: single CD34+ cells that lack detectable T cell, B cell, and myeloid antigens produce multiple colony-forming cells when cultured with marrow stromal cells J Exp Med 1990 172: 355–358

    Google Scholar 

  74. Srour EF, Brandt JE, Leemhuis T et al. Simultaneous use of CD34, Cd15, anti HLA-DR and rhodamine 123 for the isolation of precursors of human hematopoietic progenitor cells Cytometry 1991 12: 179–183

    CAS  PubMed  Google Scholar 

  75. Udomsakdi U, Lansdorp PM, Hogge DE et al. Characterization of primitive hematopoietic cells in normal peripheral blood Blood 1992 80: 2513–2521

    CAS  PubMed  Google Scholar 

  76. Bender JG, Unverzagt KL, Walker DE et al. Identification and comparison of CD34+ cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry Blood 1991 77: 2591–2596

    CAS  PubMed  Google Scholar 

  77. Inaba T, Shimazaki C, Hirata T et al. Phenotypic differences of CD34-positive stem cells harvested from peripheral blood and bone marrow obtained before and after peripheral blood stem cell collection Bone Marrow Transplant 1994 13: 527–532

    CAS  PubMed  Google Scholar 

  78. Murray L, Chen B, Galy A et al. Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin−subpopulation from mobilized peripheral blood Blood 1995 85: 368–378

    CAS  PubMed  Google Scholar 

  79. Haas R, Mohle R, Pforsich M et al. Blood-derived autografts collected during granulocyte colony-stimulating factor-enhanced recovery are enriched with early Thy-1+ hematopoietic progenitor cells Blood 1995 85: 1936–1943

    CAS  PubMed  Google Scholar 

  80. Humeau L, Bardin F, Maroc C et al. Phenotypic, molecular, and functional characterization of human peripheral blood CD34+/Thy1+ cells Blood 1996 87: 949–955

    CAS  PubMed  Google Scholar 

  81. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells Blood 1999 94: 2548–2554

    CAS  PubMed  Google Scholar 

  82. Goodell M . CD34+ or CD34: does it really matter? Blood 1999 94: 2545–2547

    CAS  PubMed  Google Scholar 

  83. Randall TD, Weissman IL . Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment Blood 1997 89: 3596–3606

    CAS  PubMed  Google Scholar 

  84. Urbano-Ispizua A, Brunet S, Solano C . Allogeneic transplantation of CD34+ selected cells from peripheral blood (allo-PBT/CD34+) in patients with myeloid malignancies in early phase: a case control comparison with unmanipulated peripheral blood transplants (allo-PBT) Blood 1999 94: (Suppl.1) (Abstr.2707)

    Google Scholar 

  85. Brandt JE, Srour EF, van Besien K et al. Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow J Clin Invest 1990 86: 932–941

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Iscove NN, X Yan X . Precursors (pre-CFCmulti) of multilineage hematopoietic colony-forming cells quantitated in vitro J Immunol 1990 145: 190–195

    CAS  PubMed  Google Scholar 

  87. Petzer AL, Hogge DE, Landsdorp PM et al. Self-renewal of primitive human hematopoietic stem cells (long-term-culture initiating cells) in vitro and their expansion in defined medium Proc Natl Acad Sci USA 1996 93: 1470–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Sutherland HJ, Lansdorp PM, Henkelman DH et al. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers Proc Natl Acad Sci USA 1990 87: 3584–3588

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Moore MAS . Expansion of myeloid stem cells in culture Semin Hematol 1995 32: 183–200

    CAS  PubMed  Google Scholar 

  90. Pettengel R, Luft T, Henschler R et al. Direct comparison by limiting dilution analysis of long-term culture-initiating cells in human bone marrow, umbilical cord blood, and blood stem cells Blood 1994 84: 3653–3659

    Google Scholar 

  91. Fujisaki T, Otsuka T, Harade M et al. Granulocyte colony-stimulating factor mobilizes primitive hematopoietic stem cells in normal individuals Bone Marrow Transplant 1995 16: 57–62

    CAS  PubMed  Google Scholar 

  92. Prosper F, Stroncek D, Verfaillie CM . Phenotypic and functional characterization of long-term culture-initiating cells present in peripheral blood progenitor collections of normal donors treated with granulocyte colony stimulating factor Blood 1996 88: 2033–2042

    CAS  PubMed  Google Scholar 

  93. Prosper F, Vanoverbeke K, Stroncek D, Verfaillie CM . Primitive long-term culture initiating cells (LTC-ICs) in granulocyte colony-stimulating factor mobilized peripheral blood progenitor cells have similar potential for ex vivo expansion as primitive LTC-ICs in steady state bone marrow Blood 1997 89: 3991–3997

    CAS  PubMed  Google Scholar 

  94. Beatty PG, Clift RA, Mickelson EM et al. Marrow transplantation from related donors other than HLA-identical siblings New Engl J Med 1985 313: 765–771

    CAS  PubMed  Google Scholar 

  95. O'Reilly RJ, Kernan NA, Cunningham I et al. T-cell depleted marrow transplants for the treatment of leukemia. In: Gale RP, Champlin RE (eds) Bone Marrow transplantation: Current Controversies Alan R Liss: New York 1989 477–493

    Google Scholar 

  96. Anasetti C, Amos D, Beatty PG et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma New Engl J Med 1989 320: 197–204

    CAS  PubMed  Google Scholar 

  97. Szydlo R, Goldman JM, Klein JP et al. Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings J Clin Oncol 1997 15: 1767–1777

    CAS  PubMed  Google Scholar 

  98. Aversa F, Tabilio A, Terenzi A et al. Successful engraftment of T-cell-depleted haploidentical ‘three-loci’ incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum Blood 1994 84: 3948–3955

    CAS  PubMed  Google Scholar 

  99. Aversa F, Tabilio A, Velardi A et al. Treatment of high-risk acute leukemia with T-cell depleted stem cells from related donors with one fully mismatched HLA haplotype New Engl J Med 1998 339: 1186–1193

    CAS  PubMed  Google Scholar 

  100. Beelen DW, Ottinger HD, Elmaagacli A et al. Transplantation of filgrastim-mobilized peripheral blood stem cells from HLA identical sibling or alternate family donors in patients with hematologic malignancies: a prospective comparison on clinical outcome, immune reconstitution, and hematopoietic chimerism Blood 1997 90: 4725–4735

    CAS  PubMed  Google Scholar 

  101. Henslee-Downey PJ, Abhyankar SH, Parrish RS et al. Use of partially mismatched related donors extends access to allogeneic marrow transplant Blood 1997 89: 3864–3872

    CAS  PubMed  Google Scholar 

  102. De Vries-van der Zwan, van der Pol MA, Besseling AC . Hematopoietic stem cells can induce specific skin graft acceptance across full MHC barriers Bone Marrow Transplant 1998 22: 91–98

    Google Scholar 

  103. Rachamin N, Gan J, Segall H et al. Tolerance induction by ‘megadose’ hematopoietic transplants Transplantation 1998 65: 1386–1393

    Google Scholar 

  104. Ridge JP, Fuchs EJ, Matzinger P . Neonatal tolerance revisited: tuning on newborn T cells with dendritic cells Science 1996 271: 1723–1726

    CAS  PubMed  Google Scholar 

  105. Mueller DL, Jenkins MK, Schwartz RH . Clonal expansion versus functional clonal inactivation Ann Rev Immunol 1989 7: 445–480

    CAS  Google Scholar 

  106. Janeway CA, Bottomly K . Signal and signs for lymphocyte responses Cell 1994 76: 275–285

    CAS  PubMed  Google Scholar 

  107. Goodnow CC . Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires Proc Natl Acad Sci USA 1996 93: 2264–2271

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Rondelli D, Andrews RG, Hansen JA et al. Alloantigen presenting function of normal human CD34+ hematopoietic cells Blood 1996 88: 2619–2625

    CAS  PubMed  Google Scholar 

  109. Reisner Y, Ben-bassat I, Douer D et al. Demonstration of clonable alloreactive T cells in a primate model for bone marrow transplantation Proc Natl Acad Sci USA 1986 83: 4012–4015

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Butturini A, Seeger RC, Gale RP . Recipient immune-competent T lymphocytes can survive intensive conditioning for bone marrow transplantation Blood 1986 68: 954–956

    CAS  PubMed  Google Scholar 

  111. Gyger M, Baron C, Forest L et al. Quantitative assessment of hematopoietic chimerism after allogeneic bone marrow transplantation has predictive value for the occurrence of irreversible graft failure and graft-vs-host disease Exp Hematol 1998 26: 426–434

    CAS  PubMed  Google Scholar 

  112. Reisner Y, Martelli MF . Stem cell escalation enables HLA-disparate haematopoietic transplants in leukemia patients Immunol Today 1999 20: 343–347

    CAS  PubMed  Google Scholar 

  113. Korbling M, Huh YO, Durett A et al. Allogeneic blood stem cell transplantation: peripheralization and yield of donor-derived primitive hematopoietic progenitor cells (CD34+ Thy-1dim) and lymphoid subsets, and possible predictors of engraftment and graft-versus-host disease Blood 1995 86: 2842–2848

    CAS  PubMed  Google Scholar 

  114. Sugimori N, Nakao S, Miura Y et al. Shedding of L-selectin on T cells induced by G-CSF administration in vivo: a possible mechanism for the low incidence of acute graft-versus host disease after allogeneic blood stem cell transplantation Blood 1997 90: (Suppl.1) (Abstr.362a)

    Google Scholar 

  115. Atkinson K, Farelly H, Cooley M et al. Human marrow T cell dose correlates with severity of subsequent acute graft-versus-host disease Bone Marrow Transplant 1987 2: 51–57

    CAS  PubMed  Google Scholar 

  116. Kernan NA, Collins NH, Juliano L et al. Clonable T lymphocytes in T cell-depleted bone marrow transplants correlate with the development of graft-v-host disease Blood 1986 68: 770–773

    CAS  PubMed  Google Scholar 

  117. Schmitz N, Dreger P, Suttorp M et al. Primary transplantation of allogeneic peripheral blood progenitor cells mobilized by filgrastim (granulocyte colony-stimulating factor) Blood 1995 85: 1666–1672

    CAS  PubMed  Google Scholar 

  118. Russell JA, Luider J, Weaver M et al. Collection of progenitor cells for allogeneic transplantation from peripheral blood from normal donors Bone Marrow Transplant 1995 15: 111–115

    CAS  PubMed  Google Scholar 

  119. Azevedo WM, Aranha FJ, Gouvea JV et al. Allogeneic transplantation with blood stem cells mobilized by rhG-CSF for hematological malignancies Bone Marrow Transplant 1995 16: 647–653

    CAS  PubMed  Google Scholar 

  120. Przepiorka D, Smith TL, Folloder J . Risk factors for acute graft-versus-host disease after allogeneic blood stem cell transplantation Blood 1999 94: 1465–1470

    CAS  PubMed  Google Scholar 

  121. Mosmann TR, Coffman RL . TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties Annu Rev Immunol 1989 7: 145–173

    CAS  PubMed  Google Scholar 

  122. Krenger W, Ferrara JL . Graft-versus-host disease and the Th1/Th2 paradigm Immunol Res 1996 15: 50–73

    CAS  PubMed  Google Scholar 

  123. Abbas AK, Murphy KM, Sher A . Functional diversity of helper T lymphocytes Nature 1996 383: 787–793

    CAS  PubMed  Google Scholar 

  124. Mosmann TR, Sad S . The expanding universe of T-cell subsets: Th1, Th2 and more Immunol Today 1996 17: 138–146

    CAS  PubMed  Google Scholar 

  125. Carter LL, Dutton RW . Type 1 and type 2: a fundamental dichotomy for all T-cell subsets Curr Opin Immunol 1996 8: 336–342

    CAS  PubMed  Google Scholar 

  126. Romagani S . The Th1/Th2 paradigm Immunol Today 1997 18: 263–266

    Google Scholar 

  127. Zeng D, Lewis D, Dejbakhsh-Jones S . Bone marrow NK1.1+ T cells reciprocally regulate acute graft versus host disease J Exp Med 1999 189: 1073–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pan L, Delmonte J, Jalonen CK, Ferrara JLM . Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces the severity of experimental graft-versus-host disease Blood 1995 86: 4422–4429

    CAS  PubMed  Google Scholar 

  129. Zeng D, Dejbakhsh-Jones S, Strober S . Granulocyte colony-stimulating factor reduces the capacity of blood mononuclear cells to induce graft-versus-host disease: impact on blood progenitor cell transplantation Blood 1997 90: 453–463

    CAS  PubMed  Google Scholar 

  130. Fowler DH, Kurasawa K, Smith R et al. Donor CD4-enriched cells of Th2 cytokine phenotype regulate graft-versus-host disease without impairing allogeneic engraftment in sublethally irradiated mice Blood 1994 84: 3540–3549

    CAS  PubMed  Google Scholar 

  131. Krenger W, Snyder KM, Byon JCH et al. Polarized type 2 alloreactive CD4+ and CD8+ donor T cells fail to induce experimental acute graft-versus-host disease J Immunol 1995 155: 585–593

    CAS  PubMed  Google Scholar 

  132. Nestel FP, Price KS, Seemayer TA, Lapp WS . Macrophage priming and lipopolysaccharide-triggered release of tumor necrosis factor alpha during graft-versus-host disease J Exp Med 1992 175: 405–413

    CAS  PubMed  Google Scholar 

  133. Krenger W, Cooke KR, Crawford LM et al. Transplantation of type 2 donor T cells reduces mortality caused by experimental graft-versus-host disease Transplantation 1996 62: 1278–1285

    CAS  PubMed  Google Scholar 

  134. Umlauf SW, Beverley B, Kang SM et al. Molecular regulation of the IL-2 gene: rheostatic control of the immune system Immunol Rev 1993 133: 177–197

    CAS  PubMed  Google Scholar 

  135. Arpinati M, Loken M, Anasetti C . G-CSF mobilizes type-2 dendritic cells rather than type 1-dedtritic cells Blood 1998 92: (Suppl.1) (Abstr.111a)

    Google Scholar 

  136. Rissoan MC, Soumelis V, Kadowaki N et al. Reciprocal control of T helper cell and dendritic cell differentiation Science 1999 283: 1183–1186

    CAS  PubMed  Google Scholar 

  137. Bottomly K . T cells and dendritic cells get intimate Science 1999 283: 1124–1125

    CAS  PubMed  Google Scholar 

  138. Fowler DH, Withfield B, Livingston M et al. Non-host reactive donor CD8+ T cells of Tc2 phenotype potently inhibit marrow graft rejection Blood 1998 91: 4045–4050

    CAS  PubMed  Google Scholar 

  139. Palathumpat V, Dejbakhsh-Jones S, Holm B et al. Studies of CD4 CD8 bone marrow T cells with suppressor activity J Immunol 1992 148: 373–380

    CAS  PubMed  Google Scholar 

  140. Palathumpat V, Dejbakhsh-Jones S, Holm B, Strober S . Different subsets of T cells in the adult mouse bone marrow and spleen induce or suppress acute graft-versus-host disease J Immunol 1992 149: 808–817

    CAS  PubMed  Google Scholar 

  141. Schmidt-Wolf IGH, Dejbakhsh-Jones S, Ginzton N et al. T-cell subsets and suppressor cells in human bone marrow Blood 1992 80: 3242–3250

    CAS  PubMed  Google Scholar 

  142. Kusnierz-Glaz CR, Still BJ, Amano M et al. Granulocyte colony-stimulating factor-induced comobilization of CD4 CD8 T cells and hematopoietic progenitor cells (CD34+) in the blood of normal donors Blood 1997 89: 2586–2595

    CAS  PubMed  Google Scholar 

  143. Tanaka J, Mielcarek M, Torok-Storb B . Impaired induction of the CD28-responsive complex in granulocyte colony-stimulating factor mobilized CD4 T cells Blood 1998 91: 347–352

    CAS  PubMed  Google Scholar 

  144. Mielcarek M, Graf L, Johnson G, Torok-Storb B . Production of interleukin-10 by granulocyte colony-stimulating factor-mobilized blood products: a mechanism for monocyte-mediated suppression of T-cell proliferation Blood 1998 92: 215–222

    CAS  PubMed  Google Scholar 

  145. Mackall CL, Granger L, Sheard MA et al. T-cell regeneration after bone marrow transplantation: differential CD45 isoform on thymic-derived versus thymic-independent progeny Blood 1993 82: 2585–2594

    CAS  PubMed  Google Scholar 

  146. Sato K, Ohtsuka K, Hasegawa K et al. Evidence for extrathymic generation of intermediate T cell receptors in the liver revealed in thymectomized, irradiated mice subjected to bone marrow transplantation J Exp Med 1995 182: 759–767

    CAS  PubMed  Google Scholar 

  147. Dulude G, Brochu S, Fontaine P et al. Thymic and extrathymic differentiation and expansion of T lymphocytes following bone marrow transplantation in irradiated recipients Exp Hematol 1997 25: 992–1004

    CAS  PubMed  Google Scholar 

  148. Thomas JA, Sloane JP, Imrie SF et al. Immunohistology of the thymus in bone marrow transplant recipients Am J Pathol 1986 122: 531–540

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Muller-Hermelink HK, Sale GE, Borisch B, Storb R . Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic and immunohistochemical study of 36 patients Am J Pathol 1987 129: 242–256

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Fukushi N, Arase H, Wang B et al. Thymus: a direct target tissue in graft-versus-host reaction after allogeneic bone marrow transplantation that results in abrogation of induction of self tolerance Proc Natl Acad Sci USA 1990 87: 6301–6305

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Lapp WS, Ghayur T, Mendes M et al. The functional and histological basis for graft-versus-host induced immunosuppression Immunol Rev 1985 88: 107–133

    CAS  PubMed  Google Scholar 

  152. Sayer HG, Longton G, Bowden R et al. Increased risk of infection in marrow transplant patients receiving methylprednisone for graft-versus-host disease prevention Blood 1994 84: 1328–1332

    CAS  PubMed  Google Scholar 

  153. Mackall CL, Punt JA, Morgan P et al. Thymic function in young/old chimeras: substantial thymic T cell regenerative capacity despite irreversible age-associated thymic involution Eur J Immunol 1998 28: 1886–1893

    CAS  PubMed  Google Scholar 

  154. Mackall CL, Hakim FT, Gress RE . T cell regeneration: all repertoires are not created equal Immunol Today 1997 18: 245–251

    CAS  PubMed  Google Scholar 

  155. Mackall CL, Gress RE . Pathways of T cell regeneration in mice and humans: implications for bone marrow transplantation and immunotherapy Immunol Rev 1997 157: 61–72

    CAS  PubMed  Google Scholar 

  156. de Gast GC, Verdonck LF, Middeldorp JM et al. Recovery of T cell subsets after autologous transplantation is mainly due to proliferation of mature T cells in the graft Blood 1985 66: 428–431

    CAS  PubMed  Google Scholar 

  157. Roux E, Helg C, Dumont-Girard F et al. Analysis of T-cell repopulation after allogeneic bone marrow transplantation: significant differences between recipients of T-cell depleted and unmanipulated grafts Blood 1996 87: 3984–3992

    CAS  PubMed  Google Scholar 

  158. Mackall CL, Bare CV, Granger LA et al. Thymic-independent T cell regeneration occurs via antigen-driven expansion of peripheral T cells resulting in a repertoire that is limited in diversity and prone to skewing J Immunol 1996 156: 4609–4616

    CAS  PubMed  Google Scholar 

  159. Brochu S, Rioux-Masse B, Roy J et al. Massive activation-induced cell death of alloreactive T cells with apoptosis of bystander post thymic T cells prevents immune reconstitution in mice with graft-versus-host disease Blood 1999 94: 390–400

    CAS  PubMed  Google Scholar 

  160. Dulude G, Roy DC, Perreault C . The effect of graft-versus-host disease on T cell production and homeostasis J Exp Med 1999 189: 1329–1342

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Roberts MM, To LB, Gillis D et al. Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation Bone Marrow Transplant 1993 12: 469–475

    CAS  PubMed  Google Scholar 

  162. Ottinger HD, Beelen DW, Scheulen B et al. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow Blood 1996 88: 2775–2779

    CAS  PubMed  Google Scholar 

  163. Carabasi MH, Tilden AB, Shrestra K et al. Rapid immune reconstitution in recipients of T cell depleted peripheral blood stem cell transplants from HLA identical siblings Blood 1997 90: (Suppl.1) (Abstr.542a)

    Google Scholar 

  164. Anderlini P, Pzepiorka D, Khouri I et al. Chronic graft-versus-host disease after allogeneic marrow or blood stem cell transplantation Blood 1995 86: (Suppl.1) (Abstr.109a)

    Google Scholar 

  165. Majolino I, Saglio G, Scime R et al. High incidence of chronic GVHD after primary allogeneic blood stem cell transplantation in patients with hematological malignancies Bone Marrow Transplant 1996 17: 555–560

    CAS  PubMed  Google Scholar 

  166. Korbling M, Mirza N, Thall P et al. 100 HLA-identical allogeneic blood stem cell transplantations: the MD Anderson Cancer Center experience Bone Marrow Transplant 1997 19: (Suppl.1) (Abstr.S72)

    Google Scholar 

  167. Storek J, Gooley T, Siadak M et al. Allogeneic peripheral blood stem cell transplantation may be associated with a high risk of chronic graft-versus-host disease Blood 1997 90: 4705–4709

    CAS  PubMed  Google Scholar 

  168. Palvetic S, Tarantolo S, Lynch J et al. Chronic graft-versus-host disease after allogeneic blood stem cell or bone marrow transplantation: factors determining onset and survival Proc Amer Soc Clin Oncol 1999 18: (Abstr.54a)

    Google Scholar 

  169. Brown RA, Adkins D, Khoury H et al. Long-term follow-up of high risk allogeneic peripheral-blood stem-cell transplant recipients: graft-versus-host disease and transplant-related mortality J Clin Oncol 1999 17: 806–812

    CAS  PubMed  Google Scholar 

  170. Hakim FT, Mackall CL . The immune system: effector and target of graft-versus-host disease. In: JLM Ferrara, HJ Deeg, SJ Burakoff (eds) Graft-vs-host Disease, 2nd edn Marcel Dekker: New York 1997 pp257–289

    Google Scholar 

  171. Ageitos AG, Varney ML, Bierman PJ et al. Comparison of monocyte-dependent T cell inhibitory activity in GM-CSF vs G-CSF mobilized PSC products Bone Marrow Transplant 1999 23: 63–69

    CAS  PubMed  Google Scholar 

  172. Mielcarek M, Martin PJ, Torok-Storb B . Suppression of alloantigen-induced T cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells Blood 1997 89: 1629–1634

    CAS  PubMed  Google Scholar 

  173. Enk AH, Saloga J, Becker D et al. Induction of hapten-specific tolerance by interleukin 10 in vivo J Exp Med 1994 179: 1397–1402

    CAS  PubMed  Google Scholar 

  174. Bacetta R, Bigler M, Touraine JL et al. High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells J Exp Med 1994 179: 493–502

    Google Scholar 

  175. Becker JC, Czerny C, Brocker EB . Maintenance of clonal anergy by endogenously produced IL-10 Int Immunol 1994 6: 1605–1612

    CAS  PubMed  Google Scholar 

  176. Akdis CA, Blesken T, Akdis M et al. Role of interleukin 10 in specific immunity J Clin Invest 1998 102: 98–106

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Fiorentino DF, Zlotnik A, Vieira P et al. IL-10 acts on the antigen-presenting cell to inhibit cytokine production by Th1 cells J Immunol 1991 146: 3444–3451

    CAS  PubMed  Google Scholar 

  178. Buelens C, Verhasselt V, De Groote D et al. Human dendritic cell responses to lipopolysaccharide and CD40 ligation are differentially regulated by IL-10 Eur J Immunol 1997 27: 1848–1854

    CAS  PubMed  Google Scholar 

  179. Korneich A, Lambermont M, Feremans W et al. Decreased IFN-γ secretion by T lymphocytes in leukapheresis after G-CSF mobilization of healthy donors Blood 1997 90: (Suppl.1) (Abstr.564a)

    Google Scholar 

  180. Weiden PL, Flournoy N, Thomas ED et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts New Engl J Med 1979 300: 1068–1073

    CAS  PubMed  Google Scholar 

  181. Horowitz MM, Gale RP, Sondel PM et al. Graft-versus-leukemia reactions after bone marrow transplantation Blood 1990 75: 555–562

    CAS  PubMed  Google Scholar 

  182. Barrett AJ, Malkovska V . Graft-versus-leukemia: understanding and using the alloimmune response to treat hematological malignancies Br J Haematol 1996 93: 754–761

    CAS  PubMed  Google Scholar 

  183. Jacobs R, Stoll M, Stratmann G et al. CD16− CD56+ natural killer cells after bone marrow transplantation Blood 1992 79: 3239–3244

    CAS  PubMed  Google Scholar 

  184. Hauch M, Gazzola MV, Small T et al. Anti-leukemia potential of interleukin-2 activated natural killer cells after bone marrow transplantation for chronic myelogenous leukemia Blood 1990 75: 2250–2262

    CAS  PubMed  Google Scholar 

  185. Zeis M, Uharek L, Glass B et al. Allogeneic NK cells as potent antileukemic effector cells after allogeneic bone marrow transplantation in mice Transplantation 1995 59: 1734–1736

    CAS  PubMed  Google Scholar 

  186. Glass B, Uharek L, Zeis M et al. Graft-versus-leukemia activity can be predicted by natural cytotoxicity against leukaemia Br J Haematol 1996 93: 412–420

    CAS  PubMed  Google Scholar 

  187. Ringden O, Remberger M, Runde V et al. Peripheral blood stem cell transplantation from unrelated donors: a comparison with marrow transplantation Blood 1999 94: 455–464

    CAS  PubMed  Google Scholar 

  188. Silva MR, Parreira A, Ascencao JL . Natural killer cell numbers and activity in mobilized peripheral blood stem cell grafts: conditions for in vitro expansion Exp Hematol 1995 23: 1676–1681

    CAS  PubMed  Google Scholar 

  189. Glass B, Uharek L, Zeis M et al. Allogeneic peripheral blood progenitor cell transplantation in a murine model: evidence for an improved graft-versus-leukemia effect Blood 1997 90: 1694–1700

    CAS  PubMed  Google Scholar 

  190. Elmaagacli AH, Beelen DW, Opalka B et al. The risk of residual molecular and cytogenetic disease in patients with Philadelphia-chromosome positive first chronic phase myelogenous leukemia is reduced after transplantation of allogeneic peripheral blood stem cells compared with bone marrow Blood 1999 94: 384–389

    CAS  PubMed  Google Scholar 

  191. Pan L, Teshima T, Hill GR . Granulocyte colony-stimulating factor-mobilized allogeneic stem cell transplantation maintains graft-versus-leukemia through a perforin-dependent pathway while preventing graft-versus-host disease Blood 1999 93: 4071–4078

    CAS  PubMed  Google Scholar 

  192. Hart DNJ . Dendritic cells: unique leukocyte populations which control the primary immune response Blood 1997 90: 3245–3287

    CAS  PubMed  Google Scholar 

  193. Avignan D . Dendritic cells: development, function and potential use for cancer immunotherapy Blood Rev 1999 13: 51–64

    Google Scholar 

  194. Egner W, McKenzie JL, Stewart M et al. Identification of potent mixed leukocyte reaction-stimulatory cells in human bone marrow J Immunol 1993 150: 3043–3053

    CAS  PubMed  Google Scholar 

  195. Egner W, Andreesen R, Hart DNJ . Allostimulatory cells in fresh human blood: heterogeneity in antigen-presenting cell populations Transplantation 1993 56: 945–950

    CAS  PubMed  Google Scholar 

  196. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    CAS  PubMed  Google Scholar 

  197. Lu L, Li W, Fu F et al. Blockade of the CD40-CD40 ligand pathway potentiates the capacity of donor-derived dendritic cells progenitors to induce long-term cardiac allograft survival Transplantation 1997 64: 1808–1815

    CAS  PubMed  Google Scholar 

  198. Lu L, McCaslin D, Starzl TE, Thomson AW . Bone marrow-derived dendritic cell progenitors (NLDC 145+, MHC Class II+, B7–1dim, B7–2) induce alloantigen-specific hyporesponsiveness in murine T lymphocytes Transplantation 1995 60: 1539–1545

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Fu F, Li Y, Qian S et al. Costimulatory molecule-deficient dendritic cell progenitors (MHC Class II+, CD80dim, CD86) prolong cardiac allograft survival in nonimmunosuppressed recipients Transplantation 1996 62: 659–665

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Rastellini C, Lu L, Ricordi C et al. Granulocyte/macrophage colony-stimulating factor-stimulated hepatic dendritic cell progenitors prolong pancreatic islet allograft survival Transplantation 1995 60: 1366–1370

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Thomson AW, Lu L . Are dendritic cells the key to liver transplant tolerance? Immunol Today 1999 20: 27–32

    CAS  PubMed  Google Scholar 

  202. Koch F, Stanzl U, Jennewein P et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10 J Exp Med 1996 184: 741–736

    CAS  PubMed  Google Scholar 

  203. Cella M, Scheidegger D, Palmer-Lehmann K et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T–T help via APC activation J Exp Med 1996 184: 747–752

    CAS  PubMed  Google Scholar 

  204. Olweus J, BitMansour A, Warnke R et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin Proc Natl Acad Sci USA 1997 94: 12551–12556

    CAS  PubMed  PubMed Central  Google Scholar 

  205. O'Doherty U, Peng M, Gezelter S et al. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature Immunology 1994 82: 487–493

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Grouard G, Rissoan MC, Filgueira L et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand J Exp Med 1997 185: 1101–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  207. Saunders D, Lucas K, Ismaili J et al. Dendritic cell development in culture from thymic precursor cells in the absence of granulocyte/macrophage colony stimulating factor J Exp Med 1996 184: 2185–2196

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Keating A, Singer JW, Killen PD . Donor origin of the in vitro hematopoietic microenvironment after marrow transplantation in man Nature 1982 298: 280–283

    CAS  PubMed  Google Scholar 

  209. Simons PJ, Przepiorka D, Thomas ED, Torok-Storb B . Host origin of marrow stromal cells following allogeneic bone marrow transplantation Nature 1987 328: 429–432

    Google Scholar 

  210. Torok-Storb B, Holmberg L . Role of marrow microenvironment in engraftment and maintenance of allogeneic hematopoietic stem cells Bone Marrow Transplant 1994 14: (Suppl.4) S71–S73

    PubMed  Google Scholar 

  211. Lazarus HM, Haynesworth SE, Gerson SL, Caplan AL . Human bone marrow-derived mesenchymal (stromal) progenitor cells (MPCs) cannot be recovered from peripheral blood progenitor cell collections J Hematother 1997 6: 447–455

    CAS  PubMed  Google Scholar 

  212. Singer JW, Slack JL, Lilly MB, Andrews DF III . Marrow stromal cells: response to cytokines and control of gene expression. In: Long MW, Wicha MS (eds) The Hematopoietic Microenvironment the Functional and Structural Basis of Blood Cell Development Johns Hopkins University Press: Baltimore, London 1993 pp127–151

    Google Scholar 

  213. Rosenfeld C, Collins R, Pineiro L et al. Allogeneic blood stem cell transplantation without posttransplant colony-stimulating factors in patients with hematopoietic neoplasm: a phase II study J Clin Oncol 1996 14: 1314–1319

    CAS  PubMed  Google Scholar 

  214. Przepiorka D, Anderlini P, Ippoliti C et al. Allogeneic blood stem cell transplantation in advanced hematologic cancers Bone Marrow Transplant 1997 19: 455–460

    CAS  PubMed  Google Scholar 

  215. Russell JA, Brown C, Bowen T et al. Allogeneic blood cell transplants for haematological malignancy: preliminary comparison of outcomes with bone marrow transplantation Bone Marrow Transplant 1996 17: 703–708

    CAS  PubMed  Google Scholar 

  216. Horwitz EM, Prockop DJ, Fitzpatrick LA et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta Nature Med 1999 5: 309–313

    CAS  PubMed  Google Scholar 

  217. Gerson SL . Mesenchymal stem cells: no longer second class marrow citizens Nature Med 1999 5: 262–264

    CAS  PubMed  Google Scholar 

  218. Ferrari G, Cusella-De Angelis G, Coletta M et al. Muscle regeneration by bone marrow-derived myogenic progenitors Science 1998 279: 1528–1530

    CAS  PubMed  Google Scholar 

  219. Petersen BE, Bowen WC, Patrene KD et al. Bone marrow as a potential source of hepatic oval cells Science 1999 284: 1168–1170

    CAS  PubMed  Google Scholar 

  220. Giralt S, Estey E, Albitar M et al. Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy Blood 1997 89: 4531–4536

    CAS  PubMed  Google Scholar 

  221. Slavin S, Nagler A, Naparstek E et al. Nonmyeloablative stem cell transplantation and cell therapy as an alternative to conventional bone marrow transplantation with lethal cytoreduction for the treatment of malignant and non malignant hematologic diseases Blood 1998 91: 756–763

    CAS  PubMed  Google Scholar 

  222. Storb R, Yu C, Wagner JL et al. Stable mixed hematopoietic chimerism in DLA-identical littermate dogs given sublethal total body irradiation before and pharmacological immunosuppression after marrow transplantation Blood 1997 89: 3048–3054

    CAS  PubMed  Google Scholar 

  223. Yu C, Sandmaier BM, Seidel K, Storb R . Peripheral blood stem cell (PBSC) grafts from DLA-identical littermates result in enhanced mixed hematopoietic chimerism after nonmyeloablative (100cGy) total body irradiation when compared to marrow grafts Blood 1997 90: (Suppl.1) (Abstr.318b)

    Google Scholar 

  224. Tan P, Anasetti C, Hansen JA et al. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1 J Exp Med 1993 177: 165–173

    CAS  PubMed  Google Scholar 

  225. Guinan EC, Boussiotis VA, Neuberg D et al. Transplantation of anergic histoincompatible bone marrow allografts New Engl J Med 1999 340: 1704–1714

    CAS  PubMed  Google Scholar 

  226. Bensinger W, Martin P, Clift R . A prospective randomized trial of peripheral blood stem cells (PBSC) or marrow (BM) for patients undergoing allogeneic transplantation forhematologic malignancies Blood 1999 94: (Suppl.1) (Abstr.1637)

    Google Scholar 

  227. Durant ST, James Morton A . A randomized trial of filgrastim (G-CSF) stimulated donor marrow (BM) versus peripheral blood (PBPC) for allogeneic transplantation: increased extensive chronic graft versus host disease following PBPC transplantation Blood 1999 94: (Suppl.1) (Abstr.2706)

    Google Scholar 

  228. Zanjani E et al. Comparative evaluation of the in vivo engraftment potential of human fetal liver, cord blood, bone marrow and blood hematopoietic stem cells (personal communication). 8th Annual International Symposium on recent advances in hematopoietic stem cell transplantation University of Heidelberg, Germany, May 1–6 2000

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyger, M., Stuart, R. & Perreault, C. Immunobiology of allogeneic peripheral blood mononuclear cells mobilized with granulocyte-colony stimulating factor. Bone Marrow Transplant 26, 1–16 (2000). https://doi.org/10.1038/sj.bmt.1702464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.bmt.1702464

Keywords

This article is cited by

Search

Quick links