Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catenated covalent organic frameworks constructed from polyhedra

Abstract

Although the synthetic chemistry leading to interlocking molecular [n]catenanes of organic polyhedra (n = 2–3) and rings (n = 2–130) is established, the analogous chemistry that pertains to infinite three-dimensional systems ([]catenane) remains undeveloped. We report a series of []catenane covalent organic frameworks (termed catena-COFs). These were synthesized by linking 4,4′-(1,10-phenanthroline-2,9-diyl)dibenzaldehyde to either of tris-(4-aminophenyl)-amine, -methane or -methanol through imine condensation. These combinations give discrete adamantane-like polyhedra, catenated by virtue of the copper(I) ions templating a mutually embracing arrangement of PDBs (points-of-catenation), which ultimately results in infinite catena-COF-805, 806 and 807. The crystal structures of these COFs obtained from electron microscopy and X-ray diffraction were determined to be isoreticular and to adopt the bor-y structure type.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthetic strategy and design of the 3D [∞]catenane COFs.
Fig. 2: Perspectives of the crystal structure of catena-COF-805.
Fig. 3: TEM data and perspective illustrations of the crystal structure of catena-COF-805.
Fig. 4: TEM data and perspective illustrations of the crystal structure of catena-COF-806.
Fig. 5: PXRD refinement and crystal structures of 3D [∞]catenane COFs.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2216102 (catena-COF-805), 2216103 (catena-COF-806) and 2216104 (catena-COF-807). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All data are available in the main text or the Supplementary Information.

References

  1. Wasserman, E. The preparation of interlocking rings: a catenane. J. Am. Chem. Soc. 82, 4433–4434 (1960).

    Article  CAS  Google Scholar 

  2. Schill, G. & Lüttringhaus, A. The preparation of catena compounds by directed synthesis. Angew. Chem. Int. Ed. Engl. 3, 546–547 (1964).

    Article  Google Scholar 

  3. Dietrich-Buchecker, C. O., Sauvage, J.-P. & Kintzinger, J. P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).

    Article  CAS  Google Scholar 

  4. Ashton, P. R. et al. A [2] catenane made to order. Angew. Chem. Int. Ed. Engl. 28, 1396–1399 (1989).

    Article  Google Scholar 

  5. Forgan, R. S., Sauvage, J.-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Gil-Ramírez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015).

    Article  Google Scholar 

  7. Sauvage, J.-P. et al. Molecular Machines and Motors (Springer, 2001).

  8. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  10. Stoddart, J. F. Mechanically interlocked molecules (MIMs)—molecular shuttles, switches, and machines. Angew. Chem. Int. Ed. 56, 11094–11125 (2017).

    Article  CAS  Google Scholar 

  11. Iino, R., Kinbara, K. & Bryant, Z. Introduction: molecular motors. Chem. Rev. 120, 1–4 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999).

    Article  CAS  Google Scholar 

  14. Hasell, T. et al. Triply interlocked covalent organic cages. Nat. Chem. 2, 750–755 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, G., Presly, O., White, F., Oppel, I. M. & Mastalerz, M. A shape-persistent quadruply interlocked giant cage catenane with two distinct pores in the solid state. Angew. Chem. Int. Ed. 53, 5126–5130 (2014).

    Article  CAS  Google Scholar 

  16. Benke, B. P., Kirschbaum, T., Graf, J., Gross, J. H. & Mastalerz, M. Dimeric and trimeric catenation of giant chiral [8 + 12] imine cubes driven by weak supramolecular interactions. Nat. Chem. (2022). https://doi.org/10.1038/s41557-022-01094-w

  17. Harrison, I. T. & Harrison, S. Synthesis of a stable complex of a macrocycle and a threaded chain. J. Am. Chem. Soc. 89, 5723–5724 (1967).

    Article  CAS  Google Scholar 

  18. Anelli, P. L., Spencer, N. & Stoddart, J. F. A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Leigh, D. A., Wong, J. K. Y., Dehez, F. & Zerbetto, F. Unidirectional rotation in a mechanically interlocked molecular rotor. Nature 424, 174–179 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Niu, Z. & Gibson, H. W. Polycatenanes. Chem. Rev. 109, 6024–6046 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, Q. et al. Poly[n]catenanes: synthesis of molecular interlocked chains. Science 358, 1434–1439 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Raphael, E., Gay, C. & de Gennes, P. G. Progressive construction of a ‘Olympic’ gel. J. Stat. Phys. 89, 111–118 (1997).

    Article  Google Scholar 

  23. Fischer, J., Lang, M. & Sommer, J. U. The formation and structure of Olympic gels. J. Chem. Phys. 143, 243114 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Jin, C.-M., Lu, H., Wu, L.-Y. & Huang, J. A new infinite inorganic [n]catenane from silver and bis(2-methylimidazoyl)methane ligand. Chem. Commun. 2006, 5039–5041 (2006).

    Article  Google Scholar 

  25. Loots, L. & Barbour, L. J. An infinite catenane self-assembled by ππ interactions. Chem. Commun. 49, 671–673 (2013).

    Article  CAS  Google Scholar 

  26. Thorp-Greenwood, F. L., Kulak, A. N. & Hardie, M. J. An infinite chainmail of M6L6 metallacycles featuring multiple Borromean links. Nat. Chem. 7, 526–531 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Kuang, X. et al. Assembly of a metal–organic framework by sextuple intercatenation of discrete adamantane-like cages. Nat. Chem. 2, 461–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Heine, J., Schmedt auf der Günne, J. & Dehnen, S. Formation of a strandlike polycatenane of icosahedral cages for reversible one-dimensional encapsulation of guests. J. Am. Chem. Soc. 133, 10018–10021 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Jiang, L., Ju, P., Meng, X.-R., Kuang, X.-J. & Lu, T.-B. Constructions of two polycatenanes and one polypseudo-rotaxane by discrete tetrahedral cages and stool-like building units. Sci. Rep. 2, 668 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shen, Y., Zhu, H.-B., Hu, J. & Zhao, Y. Construction of a metal–organic framework by octuple intercatenation of discrete icosahedral coordination cages. CrystEngComm 17, 2080–2082 (2015).

    Article  CAS  Google Scholar 

  31. Chen, L., Chen, Q., Wu, M., Jiang, F. & Hong, M. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks. Acc. Chem. Res. 48, 201–210 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Wu, X., Xu, Z.-X., Wang, F. & Zhang, J. Catenation of homochiral metal–organic nanocages or nanotubes. Inorg. Chem. 55, 5095–5097 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Cheng, L. et al. Three-dimensional polycatenation of a uranium-based metal–organic cage: structural complexity and radiation detection. J. Am. Chem. Soc. 142, 16218–16222 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. O’Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008).

    Article  PubMed  Google Scholar 

  35. Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Gemmi, M. & Oleynikov, P. Scanning reciprocal space for solving unknown structures: energy filtered diffraction tomography and rotation diffraction tomography methods. Z. Kristallogr. 228, 51–58 (2013).

    Article  CAS  Google Scholar 

  38. Skowronek, P., Warżajtis, B., Rychlewska, U. & Gawroński, J. Self-assembly of a covalent organic cage with exceptionally large and symmetrical interior cavity: the role of entropy of symmetry. Chem. Commun. 49, 2524–2526 (2013).

    Article  CAS  Google Scholar 

  39. Ivanova, S. et al. Isoreticular crystallization of highly porous cubic covalent organic cage compounds. Angew. Chem. Int. Ed. 60, 17455–17463 (2021).

    Article  CAS  Google Scholar 

  40. Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry: Metal–Organic Frameworks and Covalent Organic Frameworks (Wiley-VCH, 2019).

Download references

Acknowledgements

This research was partly supported by King Abdulaziz City for Science and Technology (Center of Excellence for Nanomaterials and Clean Energy Applications), and mechanical property measurements funded by the Defense Advanced Research Projects Agency (DARPA) under contract HR001-119-S-0048. This research used resources of the Advanced Light Source (beamline 7.3.3) at Lawrence Berkeley National Laboratory, which is a DOE Office of Science user facility under contract DE-AC02-05CH11231. Y.Z. and O.T. acknowledge the support of the Center for High-resolution Electron Microscopy (CEM), ShanghaiTech University (EM02161943), Shanghai Science and Technology Plan (21DZ2260400) and National Natural Science Foundation of China (21835002). We thank C. Zhu for assistance in acquiring synchrotron PXRD data on beamline 7.3.3 of the Advanced Light Source, A. Lund and H. Celik of the School of Chemical Sciences at the University of California-Berkeley NMR facility for assistance with solid-state NMR data acquisition, Z. Wang at the Cornell High Energy Synchrotron Source and T. Matsumoto and A. Yamano at the Rigaku Co., Japan, for the initial trials on acquiring single-crystal XRD and PXRD data. D.M.P. thanks V. A. Blatov at the Samara Center for Theoretical Materials Science for providing the ToposPro software.

Author information

Authors and Affiliations

Authors

Contributions

C.S.D., T.M. and O.M.Y. conceived the idea. T.M. and O.M.Y. led the project and interpreted the results. T.M. conducted the syntheses, structure analyses and characterizations for all the samples and interpreted the data. Y.Z. and O.T. collected and analysed the TEM data, and supported the comparison of TEM and PXRD results. J.K. and R.O.R. collected and analysed the nanoindentation data. F.G. and P.P.S. finalized the PXRD refinement. H.L. and Y.Z. supported the scanning electron microscopy measurements. N.H. conducted the THF sorption experiment. Y.L. and N.J.D. supported the linker synthesis. D.M.P. helped in the literature and topological analysis of the organic polyhedra and catenation. T.M., C.S.D. and O.M.Y. wrote the manuscript and all the authors reviewed it.

Corresponding author

Correspondence to Omar M. Yaghi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–57, Tables 1–5 and Scheme 1.

Supplementary Data 1

Crystal structure of catena-COF-805; CCDC 2216102.

Supplementary Data 2

Crystal structure of catena-COF-806; CCDC 2216103.

Supplementary Data 3

Crystal structure of catena-COF-807; CCDC 2216104.

Source data

Source Data Fig. 5

Experimental PXRD data of catena-COF-805 and -806.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Zhou, Y., Diercks, C.S. et al. Catenated covalent organic frameworks constructed from polyhedra. Nat. Synth 2, 286–295 (2023). https://doi.org/10.1038/s44160-022-00224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00224-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing