Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diffusion metamaterials

Abstract

Diffusion and wave propagation are both fundamental transport mechanisms, but they have intrinsically different dynamics, governing equations, and applications. Over the past decade, studies have emerged that use the transformation principle and metamaterials to control diffusion. Such research has led to new discoveries and exciting applications for manipulating the transport of mass (for example, particles and plasmas) and energy (such as heat). This Review introduces the basic principles, materials advances and applications of metamaterials that modulate the diffusion of heat, particles and plasmas. The theory begins with the application of the transformation principle to the diffusion equations. This approach is then generalized to incorporate non-Hermiticity, topology, non-reciprocity and spatiotemporal modulation, thus going beyond the conventional scope of metamaterials. Finally, we analyse the primary challenges associated with the design and fabrication of diffusion metamaterials and suggest several future directions, such as research into topological diffusion and machine-learning-assisted materials design.

Key points

  • Metamaterials can control the diffusion of heat, particles and plasma to enable the cloaking, rotating or converging of the respective fields.

  • The transformation principle can be used to control processes with governing equations that are form-invariant under coordinate transformations, enabling the control of diffusion processes by changing material parameters such as conductivity.

  • The unique properties of diffusion metamaterials make them useful tools for studying new physical concepts such as non-Hermitian topology, non-reciprocity and spatiotemporal modulation.

  • Some potential engineering applications of these devices include thermal camouflage, heat harvesting, particle separation and plasma-based wound healing.

  • Future work in the field of diffusion metamaterials may include the development of devices to control topological diffusion or the use of machine learning to help with the design of new metamaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermal metamaterials for manipulating heat conduction.
Fig. 2: Thermal metamaterials for manipulating heat conduction and convection.
Fig. 3: Topology and non-Hermitian physics in thermal metamaterials.
Fig. 4: Metamaterials for manipulating heat conduction, convection and radiation.
Fig. 5: Transformation diffusion and metamaterials.
Fig. 6: Manipulating particle diffusion with metamaterials.
Fig. 7: Plasma transport and metamaterials.

Similar content being viewed by others

References

  1. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006). This study used coordinate transformations to design an optical cloak, which, together with ref. 3, opens up the field of transformation optics.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  3. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006). This study used conformal mapping to design an optical cloak, which, together with ref. 1, opens up the field of transformation optics.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Yang, S., Wang, J., Dai, G., Yang, F. & Huang, J. Controlling macroscopic heat transfer with thermal metamaterials: theory, experiment and application. Phys. Rep. 908, 1–65 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  5. Maldovan, M. Sound and heat revolutions in phononics. Nature 503, 209–217 (2013). This work introduced the term ‘thermal metamaterials’ for summarizing new functions based on the transformation thermotics pioneered by ref. 39.

    Article  ADS  Google Scholar 

  6. Wegener, M. Metamaterials beyond optics. Science 342, 939–940 (2013). This work clarified the physical mechanisms of thermal diffusion metamaterials by defining the characteristic length as thermal diffusion lengths, which differ from the incident wavelengths of wave metamaterials.

    Article  ADS  Google Scholar 

  7. Kildishev, A. V. & Shalaev, V. M. Engineering space for light via transformation optics. Opt. Lett. 33, 43–45 (2008).

    Article  ADS  Google Scholar 

  8. Xu, L. & Chen, H. Conformal transformation optics. Nat. Photon. 9, 15–23 (2014).

    Article  ADS  Google Scholar 

  9. Farhat, M., Guenneau, S., Alù, A. & Wu, Y. Scattering cancellation technique for acoustic spinning objects. Phys. Rev. B 101, 174111 (2020).

    Article  ADS  Google Scholar 

  10. Han, T. et al. Experimental demonstration of a bilayer thermal cloak. Phys. Rev. Lett. 112, 054302 (2014). This work designed and fabricated a thermal bilayer cloak based on the scattering cancellation method.

    Article  ADS  Google Scholar 

  11. Farhat, M., Guenneau, S., Chen, P. Y., Alù, A. & Salama, K. N. Scattering cancellation-based cloaking for the Maxwell–Cattaneo heat waves. Phys. Rev. Appl. 11, 044089 (2019).

    Article  ADS  Google Scholar 

  12. Cummer, S. A. et al. Scattering theory derivation of a 3D acoustic cloaking shell. Phys. Rev. Lett. 100, 024301 (2008).

    Article  ADS  Google Scholar 

  13. Dede, E. M., Nomura, T. & Lee, J. Thermal-composite design optimization for heat flux shielding, focusing, and reversal. Struct. Multidiscipl. Optim. 49, 59–68 (2014).

    Article  MathSciNet  Google Scholar 

  14. Sha, W. et al. Robustly printable freeform thermal metamaterials. Nat. Commun. 12, 7228 (2021).

    Article  ADS  Google Scholar 

  15. Fujii, G., Akimoto, Y. & Takahashi, M. Exploring optimal topology of thermal cloaks by CMA-ES. Appl. Phys. Lett. 112, 061108 (2018).

    Article  ADS  Google Scholar 

  16. Jin, P. et al. Particle swarm optimization for realizing bilayer thermal sensors with bulk isotropic materials. Int. J. Heat. Mass. Transf. 172, 121177 (2021).

    Article  Google Scholar 

  17. Xu, L. & Chen, H. Transformation metamaterials. Adv. Mater. 33, 2005489 (2021).

    Article  Google Scholar 

  18. Guenneau, S. & Puvirajesinghe, T. M. Fick’s second law transformed: one path to cloaking in mass diffusion. J. R. Soc. Interface 10, 20130106 (2013). This work designed particle diffusion cloaks based on transformation theory.

    Article  Google Scholar 

  19. Huang, J. P. Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials (Springer, 2020). This book systematically introduces the development of thermal metamaterials.

  20. Ma, H. F. & Cui, T. J. Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124 (2010).

    Article  ADS  Google Scholar 

  21. Zhang, J., Pendry, J. B. & Luo, Y. Transformation optics from macroscopic to nanoscale regimes: a review. Adv. Photon. 1, 014001 (2019).

    Article  ADS  Google Scholar 

  22. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ϵ and µ. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  23. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  ADS  Google Scholar 

  24. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  ADS  Google Scholar 

  25. Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).

    Article  ADS  Google Scholar 

  26. Alu, A. & Engheta, N. Cloaking a sensor. Phys. Rev. Lett. 102, 233901 (2009).

    Article  ADS  Google Scholar 

  27. Donderici, B. & Teixeira, F. L. Metamaterial blueprints for reflectionless waveguide bends. IEEE Microw. Wirel. Compon. Lett. 18, 233–235 (2008).

    Article  Google Scholar 

  28. Fan, R. H., Xiong, B., Peng, R. W. & Wang, M. Constructing metastructures with broadband electromagnetic functionality. Adv. Mater. 32, 1904646 (2020).

    Google Scholar 

  29. Misseroni, D., Colquitt, D. J., Movchan, A. B., Movchan, N. V. & Jones, I. S. Cymatics for the cloaking of flexural vibrations in a structured plate. Sci. Rep. 6, 23929 (2016).

    Article  ADS  Google Scholar 

  30. Milton, G. W., Briane, M. & Willis, J. R. On cloaking for elasticity and physical equations with a transformation invariant form. N. J. Phys. 8, 248–248 (2006).

    Article  Google Scholar 

  31. Liu, Z. et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

    Article  ADS  Google Scholar 

  32. Gao, W., Wang, H. & Yu, F. Electromagnetic time-harmonic and static field polygonal rotator with homogeneous materials. Sci. Rep. 9, 15119 (2019).

    Article  ADS  Google Scholar 

  33. Zhou, X. & Xu, G. Self-adaptive field manipulation with thermal logic material. Int. J. Heat. Mass. Transf. 172, 121147 (2021).

    Article  Google Scholar 

  34. Zhang, Y. & Zhang, B. Bending, splitting, compressing and expanding of electromagnetic waves in infinitely anisotropic media. J. Opt. 20, 014001 (2018).

    Article  ADS  Google Scholar 

  35. Zhang, S., Xia, C. & Fang, N. Broadband acoustic cloak for ultrasound waves. Phys. Rev. Lett. 106, 024301 (2011).

    Article  ADS  Google Scholar 

  36. Xu, Y., Fu, Y. & Chen, H. Planar gradient metamaterials. Nat. Rev. Mater. 1, 16067 (2016).

    Article  ADS  Google Scholar 

  37. Stenger, N., Wilhelm, M. & Wegener, M. Experiments on elastic cloaking in thin plates. Phys. Rev. Lett. 108, 014301 (2012).

    Article  ADS  Google Scholar 

  38. Ge, H. et al. Breaking the barriers: advances in acoustic functional materials. Natl Sci. Rev. 5, 159–182 (2018).

    Article  Google Scholar 

  39. Fan, C. Z., Gao, Y. & Huang, J. P. Shaped graded materials with an apparent negative thermal conductivity. Appl. Phys. Lett. 92, 251907 (2008). This article proposes transformation thermotics (for steady-state thermal conduction), thus beginning the research on (thermal) diffusion metamaterials.

    Article  ADS  Google Scholar 

  40. Chen, T., Weng, C.-N. & Chen, J.-S. Cloak for curvilinearly anisotropic media in conduction. Appl. Phys. Lett. 93, 114103 (2008). This work developed the transformation thermotics theory for designing thermal cloaks in an anisotropic background medium.

    Article  ADS  Google Scholar 

  41. Narayana, S. & Sato, Y. Heat flux manipulation with engineered thermal materials. Phys. Rev. Lett. 108, 214303 (2012). This article reports experimental work to use transformation thermotics (in the steady state), promoting the development of thermal diffusion metamaterials.

    Article  ADS  Google Scholar 

  42. Han, T., Bai, X., Thong, J. T., Li, B. & Qiu, C. W. Full control and manipulation of heat signatures: cloaking, camouflage and thermal metamaterials. Adv. Mater. 26, 1731–1734 (2014). This article proposes the concept of thermal camouflage based on a bilayer thermal cloak.

    Article  Google Scholar 

  43. Dai, G., Shang, J. & Huang, J. Theory of transformation thermal convection for creeping flow in porous media: cloaking, concentrating, and camouflage. Phys. Rev. E 97, 022129 (2018).

    Article  ADS  Google Scholar 

  44. Liu, Y. et al. Dynamic thermal camouflage via a liquid-crystal-based radiative metasurface. Nanophotonics 9, 855–863 (2020).

    Article  Google Scholar 

  45. Maldovan, M. Narrow low-frequency spectrum and heat management by thermocrystals. Phys. Rev. Lett. 110, 025902 (2013).

    Article  ADS  Google Scholar 

  46. Li, Y. et al. Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021).

    Article  ADS  Google Scholar 

  47. Hu, R. et al. Thermal camouflaging metamaterials. Mater. Today 45, 120–141 (2021).

    Article  Google Scholar 

  48. Schittny, R., Kadic, M., Bückman, T. & Wegener, M. Invisibility cloaking in a diffusive light scattering medium. Science 345, 427–429 (2014).

    Article  ADS  Google Scholar 

  49. Khodayi-mehr, R. & Zavlanos, M. M. Deep learning for robotic mass transport cloaking. IEEE Trans. Robot. 36, 967–974 (2020).

    Article  Google Scholar 

  50. Avanzini, F., Falasco, G. & Esposito, M. Chemical cloaking. Phys. Rev. E 101, 060102 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  51. Restrepo-Flórez, J. M. & Maldovan, M. Mass separation by metamaterials. Sci. Rep. 6, 21971 (2016).

    Article  ADS  Google Scholar 

  52. Guenneau, S., Petiteau, D., Zerrad, M., Amra, C. & Puvirajesinghe, T. Transformed Fourier and Fick equations for the control of heat and mass diffusion. AIP Adv. 5, 053404 (2015).

    Article  ADS  Google Scholar 

  53. Li, Y., Liu, C., Bai, Y., Qiao, L. & Zhou, J. Ultrathin hydrogen diffusion cloak. Adv. Theory Simul. 1, 1700004 (2018).

    Article  Google Scholar 

  54. Schittny, R. et al. Transient behavior of invisibility cloaks for diffusive light propagation. Optica 2, 84–87 (2015).

    Article  ADS  Google Scholar 

  55. Li, M. et al. Advances in plasma-assisted ignition and combustion for combustors of aerospace engines. Aerosp. Sci. Technol. 117, 106952 (2021).

    Article  Google Scholar 

  56. Zhou, R. et al. Plasma-activated water: generation, origin of reactive species and biological applications. J. Phys. D 53, 303001 (2020).

    Article  ADS  Google Scholar 

  57. Tamura, H., Tetsuka, T., Kuwahara, D. & Shinohara, S. Study on uniform plasma generation mechanism of electron cyclotron resonance etching reactor. IEEE Trans. Plasma Sci. 48, 3606–3615 (2020).

    Article  ADS  Google Scholar 

  58. Reuter, S., von Woedtke, T. & Weltmann, K.-D. The kINPen — a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D 51, 233001 (2018).

    Article  ADS  Google Scholar 

  59. Liang, H., Ming, F. & Alshareef, H. N. Applications of plasma in energy conversion and storage materials. Adv. Energy Mater. 8, 1801804 (2018).

    Article  Google Scholar 

  60. Zhang, Z. & Huang, J. Transformation plasma physics. Chin. Phys. Lett. 39, 075201 (2022). This article describes the use of transformation theory to manipulate plasma transport.

    Article  ADS  Google Scholar 

  61. Wood, B. & Pendry, J. B. Metamaterials at zero frequency. J. Phys. Condens. Matter 19, 076208 (2007).

    Article  ADS  Google Scholar 

  62. Gömöry, F. et al. Experimental realization of a magnetic cloak. Science 335, 1466–1468 (2012).

    Article  ADS  Google Scholar 

  63. Zhang, R.-Y., Zhao, Q. & Ge, M.-L. The effect of electrostatic shielding using invisibility cloak. AIP Adv. 1, 042126 (2011).

    Article  ADS  Google Scholar 

  64. Narayana, S. & Sato, Y. DC magnetic cloak. Adv. Mater. 24, 71–74 (2012).

    Article  Google Scholar 

  65. Yang, F., Mei, Z. L., Jin, T. Y. & Cui, T. J. DC electric invisibility cloak. Phys. Rev. Lett. 109, 053902 (2012).

    Article  ADS  Google Scholar 

  66. Jiang, W. X., Luo, C. Y., Ge, S., Qiu, C. W. & Cui, T. J. An optically controllable transformation-dc illusion device. Adv. Mater. 27, 4628–4633 (2015).

    Article  Google Scholar 

  67. Guenneau, S., Amra, C. & Veynante, D. Transformation thermodynamics: cloaking and concentrating heat flux. Opt. Express 20, 8207–8218 (2012). This work extended transformation thermotics from steady to transient states.

    Article  ADS  Google Scholar 

  68. Schittny, R., Kadic, M., Guenneau, S. & Wegener, M. Experiments on transformation thermodynamics: molding the flow of heat. Phys. Rev. Lett. 110, 195901 (2013). This article experimentally demonstrated the transient-state thermal cloak.

    Article  ADS  Google Scholar 

  69. Xu, L., Yang, S. & Huang, J. Passive metashells with adaptive thermal conductivities: chameleonlike behavior and its origin. Phys. Rev. Appl. 11, 054071 (2019).

    Article  ADS  Google Scholar 

  70. Yang, F., Tian, B., Xu, L. & Huang, J. Experimental demonstration of thermal chameleonlike rotators with transformation-invariant metamaterials. Phys. Rev. Appl. 14, 054024 (2020).

    Article  ADS  Google Scholar 

  71. Zhang, Y., Luo, Y., Pendry, J. B. & Zhang, B. Transformation-invariant metamaterials. Phys. Rev. Lett. 123, 067701 (2019).

    Article  ADS  Google Scholar 

  72. Barati Sedeh, H., Fakheri, M. H., Abdolali, A., Sun, F. & Ma, Y. Feasible thermodynamics devices enabled by thermal-null medium. Phys. Rev. Appl. 14, 064034 (2020).

    Article  ADS  Google Scholar 

  73. Sun, F., Liu, Y., Yang, Y., Chen, Z. & He, S. Thermal surface transformation and its applications to heat flux manipulations. Opt. Express 27, 33757–33767 (2019).

    Article  ADS  Google Scholar 

  74. Liu, Y., Sun, F. & He, S. Fast adaptive thermal buffering by a passive open shell based on transformation thermodynamics. Adv. Theory Simul. 1, 1800026 (2018).

    Article  Google Scholar 

  75. Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

    Article  ADS  Google Scholar 

  76. Sun, B. et al. Dislocation-induced thermal transport anisotropy in single-crystal group-III nitride films. Nat. Mater. 18, 136–140 (2019).

    Article  ADS  Google Scholar 

  77. Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article  ADS  Google Scholar 

  78. Moccia, M., Castaldi, G., Savo, S., Sato, Y. & Galdi, V. Independent manipulation of heat and electrical current via bifunctional metamaterials. Phys. Rev. X 4, 021025 (2014).

    Google Scholar 

  79. Li, J. Y., Gao, Y. & Huang, J. P. A bifunctional cloak using transformation media. J. Appl. Phys. 108, 074504 (2010). This study designed multiphysics metamaterials to simultaneously achieve thermal and electrical cloaking.

    Article  ADS  Google Scholar 

  80. Ma, Y., Liu, Y., Raza, M., Wang, Y. & He, S. Experimental demonstration of a multiphysics cloak: manipulating heat flux and electric current simultaneously. Phys. Rev. Lett. 113, 205501 (2014). This article reports the simultaneous experimental achievement of thermal and electrical cloaking with multiphysics metamaterials.

    Article  ADS  Google Scholar 

  81. Stedman, T. & Woods, L. M. Cloaking of thermoelectric transport. Sci. Rep. 7, 6988 (2017).

    Article  ADS  Google Scholar 

  82. Yeung, W.-S., Mai, V.-P. & Yang, R.-J. Cloaking: controlling thermal and hydrodynamic fields simultaneously. Phys. Rev. Appl. 13, 064030 (2020).

    Article  ADS  Google Scholar 

  83. Tian, Y.-Z., Wang, Y.-F., Huang, G.-Y., Laude, V. & Wang, Y.-S. Dual-function thermoelastic cloak based on coordinate transformation theory. Int. J. Heat. Mass. Transf. 195, 123128 (2022).

    Article  Google Scholar 

  84. Xu, H., Shi, X., Gao, F., Sun, H. & Zhang, B. Ultrathin three-dimensional thermal cloak. Phys. Rev. Lett. 112, 054301 (2014). This work experimentally demonstrates a 3D thermal cloak using homogeneous materials.

    Article  ADS  Google Scholar 

  85. Farhat, M. et al. Thermal invisibility based on scattering cancellation and mantle cloaking. Sci. Rep. 5, 9876 (2015).

    Article  Google Scholar 

  86. Kim, J. C. et al. Recent advances in thermal metamaterials and their future applications for electronics packaging. J. Electron. Packag. 143, 010801 (2021).

    Article  ADS  Google Scholar 

  87. Dede, E. M., Zhou, F., Schmalenberg, P. & Nomura, T. Thermal metamaterials for heat flow control in electronics. J. Electron. Packag. 140, 010904 (2018).

    Article  Google Scholar 

  88. Loke, D., Skelton, J. M., Chong, T. C. & Elliott, S. R. Design of a nanoscale, CMOS-integrable, thermal-guiding structure for Boolean-logic and neuromorphic computation. ACS Appl. Mater. Interfaces 8, 34530–34536 (2016).

    Article  Google Scholar 

  89. Hu, R. et al. Binary thermal encoding by energy shielding and harvesting units. Phys. Rev. Appl. 10, 054032 (2018).

    Article  ADS  Google Scholar 

  90. Luo, H. et al. Outdoor personal thermal management with simultaneous electricity generation. Nano Lett. 21, 3879–3886 (2021).

    Article  ADS  Google Scholar 

  91. Jin, P., Xu, L., Jiang, T., Zhang, L. & Huang, J. Making thermal sensors accurate and invisible with an anisotropic monolayer scheme. Int. J. Heat. Mass Transf. 163, 120437 (2020).

    Article  Google Scholar 

  92. Yang, T. et al. Invisible sensors: simultaneous sensing and camouflaging in multiphysical fields. Adv. Mater. 27, 7752–7758 (2015).

    Article  Google Scholar 

  93. Ma, W., Cheng, F. & Liu, Y. Deep-learning-enabled on-demand design of chiral metamaterials. ACS Nano 12, 6326–6334 (2018).

    Article  Google Scholar 

  94. Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).

    Article  ADS  Google Scholar 

  95. Dai, G. Designing nonlinear thermal devices and metamaterials under the Fourier law: a route to nonlinear thermotics. Front. Phys. 16, 53301 (2022).

    Article  ADS  Google Scholar 

  96. Kang, S. et al. Temperature-responsive thermal metamaterials enabled by modular design of thermally tunable unit cells. Int. J. Heat. Mass Transf. 130, 469–482 (2019).

    Article  Google Scholar 

  97. Lei, M., Wang, J., Dai, G. L., Tan, P. & Huang, J. P. Temperature-dependent transformation multiphysics and ambient-adaptive multiphysical metamaterials. Europhys. Lett. 135, 54003 (2021).

    Article  ADS  Google Scholar 

  98. Liu, Q. & Xiao, M. Energy harvesting from thermal variation with phase-change materials. Phys. Rev. Appl. 18, 034049 (2022).

    Article  ADS  Google Scholar 

  99. Ordonez-Miranda, J. Radiative thermostat driven by the combined dynamics of electrons, phonons, and photons. Phys. Rev. Appl. 14, 064043 (2020).

    Article  ADS  Google Scholar 

  100. Ordonez-Miranda, J., Anufriev, R., Nomura, M. & Volz, S. Net heat current at zero mean temperature gradient. Phys. Rev. B 106, L100102 (2022).

    Article  ADS  Google Scholar 

  101. Shimokusu, T. J., Zhu, Q., Rivera, N. & Wehmeyer, G. Time-periodic thermal rectification in heterojunction thermal diodes. Int. J. Heat. Mass Transf. 182, 122035 (2022).

    Article  Google Scholar 

  102. Wang, J. & Dai, G. Configuration-induced directional nonlinearity enhancement in composite thermal media. Front. Phys. 10, 924890 (2022).

    Article  Google Scholar 

  103. Wang, J., Dai, G., Yang, F. & Huang, J. Designing bistability or multistability in macroscopic diffusive systems. Phys. Rev. E 101, 022119 (2020).

    Article  ADS  Google Scholar 

  104. Zhuang, P., Wang, J., Yang, S. & Huang, J. Nonlinear thermal responses in geometrically anisotropic metamaterials. Phys. Rev. E 106, 044203 (2022).

    Article  ADS  Google Scholar 

  105. Shen, X., Li, Y., Jiang, C., Ni, Y. & Huang, J. Thermal cloak-concentrator. Appl. Phys. Lett. 109, 031907 (2016).

    Article  ADS  Google Scholar 

  106. Shen, X., Li, Y., Jiang, C. & Huang, J. Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change. Phys. Rev. Lett. 117, 055501 (2016).

    Article  ADS  Google Scholar 

  107. Yang, S., Xu, L. & Huang, J. Metathermotics: nonlinear thermal responses of core–shell metamaterials. Phys. Rev. E 99, 042144 (2019).

    Article  ADS  Google Scholar 

  108. Zhang, X., Tian, Y., Jiang, J. H., Lu, M. H. & Chen, Y. F. Observation of higher-order non-Hermitian skin effect. Nat. Commun. 12, 5377 (2021).

    Article  ADS  Google Scholar 

  109. Luo, L. et al. Observation of a phononic higher-order Weyl semimetal. Nat. Mater. 20, 794–799 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  110. Liu, Y. et al. Bulk-disclination correspondence in topological crystalline insulators. Nature 589, 381–385 (2021).

    Article  ADS  Google Scholar 

  111. Jiang, B. et al. Experimental observation of non-Abelian topological acoustic semimetals and their phase transitions. Nat. Phys. 17, 1239–1246 (2021).

    Article  Google Scholar 

  112. Zhang, X. et al. Second-order topology and multidimensional topological transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019).

    Article  Google Scholar 

  113. Yang, Z. et al. Topological acoustics. Phys. Rev. Lett. 114, 114301 (2015).

    Article  ADS  Google Scholar 

  114. Cao, P.-C., Peng, Y.-G., Li, Y. & Zhu, X.-F. Phase-locking diffusive skin effect. Chin. Phys. Lett. 39, 057801 (2022).

    Article  ADS  Google Scholar 

  115. Qi, M. et al. Geometric phase and localized heat diffusion. Adv. Mater. 34, 2202241 (2022).

    Article  Google Scholar 

  116. Hu, H. et al. Observation of topological edge states in thermal diffusion. Adv. Mater. 34, 2202257 (2022).

    Article  Google Scholar 

  117. Yoshida, T. & Hatsugai, Y. Bulk-edge correspondence of classical diffusion phenomena. Sci. Rep. 11, 888 (2021).

    Article  Google Scholar 

  118. Liu, Z., Xu, L. & Huang, J. Higher-dimensional topological insulators in pure diffusion systems. Preprint at https://doi.org/10.48550/arXiv.2206.09837 (2022).

  119. Xu, G., Zhou, X., Wu, J. & Qiu, C.-W. Observation of bulk quadrupole in topological heat transport. Preprint at https://arxiv.org/abs/2206.11856v2 (2022).

  120. Urzhumov, Y. A. & Smith, D. R. Fluid flow control with transformation media. Phys. Rev. Lett. 107, 074501 (2011).

    Article  ADS  Google Scholar 

  121. Dai, G. & Huang, J. A transient regime for transforming thermal convection: cloaking, concentrating, and rotating creeping flow and heat flux. J. Appl. Phys. 124, 235103 (2018).

    Article  ADS  Google Scholar 

  122. Park, J., Youn, J. R. & Song, Y. S. Hydrodynamic metamaterial cloak for drag-free flow. Phys. Rev. Lett. 123, 074502 (2019).

    Article  ADS  Google Scholar 

  123. Oron, A., Davis, S. H. & Bankoff, S. G. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997).

    Article  ADS  Google Scholar 

  124. Dai, G. et al. Convective cloak in Hele–Shaw cells with bilayer structures: hiding objects from heat and fluid motion simultaneously. Phys. Rev. Appl. 17, 044006 (2022).

    Article  ADS  Google Scholar 

  125. Wang, B., Shih, T.-M. & Huang, J. Transformation heat transfer and thermo-hydrodynamic cloaks for creeping flows: manipulating heat fluxes and fluid flows simultaneously. Appl. Therm. Eng. 190, 116726 (2021).

    Article  Google Scholar 

  126. Li, Y. et al. Thermal meta-device in analogue of zero-index photonics. Nat. Mater. 18, 48–54 (2019). This article proposes a zero-index thermal cloak, using zero refractive index as an analogue for infinite thermal conductivity.

    Article  ADS  Google Scholar 

  127. Li, J. et al. A continuously tunable solid-like convective thermal metadevice on the reciprocal line. Adv. Mater. 32, 2003823 (2020).

    Article  Google Scholar 

  128. Zhu, Z. et al. Inverse design of rotating metadevice for adaptive thermal cloaking. Int. J. Heat. Mass Transf. 176, 121417 (2021).

    Article  Google Scholar 

  129. Joseph, D. D. & Preziosi, L. Heat waves. Rev. Mod. Phys. 61, 41–73 (1989).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  130. Xu, L. & Huang, J. Controlling thermal waves with transformation complex thermotics. Int. J. Heat. Mass Transf. 159, 120133 (2020).

    Article  Google Scholar 

  131. Zhang, Z., Xu, L., Ouyang, X. & Huang, J. Guiding temperature waves with graded metamaterials. Therm. Sci. Eng. Prog. 23, 100926 (2021).

    Article  Google Scholar 

  132. Xu, L. J., Yang, S. & Huang, J. P. Controlling thermal waves of conduction and convection. Europhys. Lett. 133, 20006 (2021).

    Article  ADS  Google Scholar 

  133. Xu, L., Huang, J. & Ouyang, X. Nonreciprocity and isolation induced by an angular momentum bias in convection-diffusion systems. Appl. Phys. Lett. 118, 221902 (2021).

    Article  ADS  Google Scholar 

  134. Xu, L. J. & Huang, J. P. Robust one-way edge state in convection-diffusion systems. Europhys. Lett. 134, 60001 (2021).

    Article  ADS  Google Scholar 

  135. Xu, L., Xu, G., Huang, J. & Qiu, C.-W. Diffusive Fizeau drag in spatiotemporal thermal metamaterials. Phys. Rev. Lett. 128, 145901 (2022).

    Article  ADS  Google Scholar 

  136. Cao, P.-C. et al. Diffusive skin effect and topological heat funneling. Commun. Phys. 4, 230 (2021).

    Article  Google Scholar 

  137. Takata, K. & Notomi, M. Photonic topological insulating phase induced solely by gain and loss. Phys. Rev. Lett. 121, 213902 (2018).

    Article  ADS  Google Scholar 

  138. Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. & Nori, F. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  139. Xu, G. et al. Diffusive topological transport in spatiotemporal thermal lattices. Nat. Phys. 18, 450–456 (2022).

    Article  Google Scholar 

  140. Liu, Z. & Huang, J. Non-Hermitian diffusive quasicrystal. Preprint at https://doi.org/10.48550/arXiv.2208.06765 (2022).

  141. Wang, Z., Chen, J. & Ren, J. Geometric heat pump and no-go restrictions of nonreciprocity in modulated thermal diffusion. Phys. Rev. E 106, L032102 (2022).

    Article  ADS  Google Scholar 

  142. Bergholtz, E. J., Budich, J. C. & Kunst, F. K. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys. 93, 015005 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  143. Ashida, Y., Gong, Z. & Ueda, M. Non-Hermitian physics. Adv. Phys. 69, 249–435 (2021).

    Article  ADS  Google Scholar 

  144. Li, Q. et al. Experimental simulation of anti-parity-time symmetric Lorentz dynamics. Optica 6, 67–71 (2019).

    Article  ADS  Google Scholar 

  145. Kawabata, K., Shiozaki, K., Ueda, M. & Sato, M. Symmetry and topology in non-Hermitian physics. Phys. Rev. X 9, 041015 (2019).

    Google Scholar 

  146. Jiang, Y. et al. Anti-parity-time symmetric optical four-wave mixing in cold atoms. Phys. Rev. Lett. 123, 193604 (2019).

    Article  ADS  Google Scholar 

  147. Yao, S. & Wang, Z. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett. 121, 086803 (2018).

    Article  ADS  Google Scholar 

  148. Shen, H., Zhen, B. & Fu, L. Topological band theory for non-Hermitian hamiltonians. Phys. Rev. Lett. 120, 146402 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  149. El-Ganainy, R. et al. Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11–19 (2018).

    Article  Google Scholar 

  150. Peng, P. et al. Anti-parity–time symmetry with flying atoms. Nat. Phys. 12, 1139–1145 (2016).

    Article  MathSciNet  Google Scholar 

  151. Li, Y. et al. Anti-parity–time symmetry in diffusive systems. Science 364, 170–173 (2019). This work reports anti-parity–time symmetry in heat diffusion systems and proposes the concept of non-Hermitian thermotics.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  152. Xu, L. et al. Geometric phase, effective conductivity enhancement, and invisibility cloak in thermal convection-conduction. Int. J. Heat. Mass Transf. 165, 120659 (2021).

    Article  Google Scholar 

  153. Zhu, W. et al. Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system. Phys. Rev. Lett. 121, 124501 (2018).

    Article  ADS  Google Scholar 

  154. Ding, K., Ma, G., Xiao, M., Zhang, Z. Q. & Chan, C. T. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Phys. Rev. X 6, 021007 (2016).

    Google Scholar 

  155. Xu, G., Li, Y., Li, W., Fan, S. & Qiu, C.-W. Configurable phase transitions in a topological thermal material. Phys. Rev. Lett. 127, 105901 (2021).

    Article  ADS  Google Scholar 

  156. Makino, S., Fukui, T., Yoshida, T. & Hatsugai, Y. Edge states of a diffusion equation in one dimension: rapid heat conduction to the heat bath. Phys. Rev. E 105, 024137 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  157. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    Article  ADS  Google Scholar 

  158. Xu, L., Dai, G. & Huang, J. Transformation multithermotics: controlling radiation and conduction simultaneously. Phys. Rev. Appl. 13, 024063 (2020).

    Article  ADS  Google Scholar 

  159. Xu, L., Yang, S., Dai, G. & Huang, J. Transformation omnithermotics: simultaneous manipulation of three basic modes of heat transfer. ES Energy Environ. 7, 65–70 (2020).

    Google Scholar 

  160. Xu, L. & Huang, J. Metamaterials for manipulating thermal radiation: transparency, cloak, and expander. Phys. Rev. Appl. 12, 044048 (2019).

    Article  ADS  Google Scholar 

  161. Hu, R. et al. Encrypted thermal printing with regionalization transformation. Adv. Mater. 31, 1807849 (2019).

    Article  Google Scholar 

  162. Peng, X. & Hu, R. Three-dimensional illusion thermotics with separated thermal illusions. ES Energy Environ. 6, 39–44 (2019).

    Google Scholar 

  163. Hu, R. et al. Illusion thermotics. Adv. Mater. 30, 1707237 (2018).

    Article  ADS  Google Scholar 

  164. Zhu, H. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021).

    Article  ADS  Google Scholar 

  165. Dede, E. M., Yu, Z., Schmalenberg, P. & Iizuka, H. Thermal metamaterials for radiative plus conductive heat flow control. Appl. Phys. Lett. 116, 191902 (2020).

    Article  ADS  Google Scholar 

  166. Li, Y., Bai, X., Yang, T., Luo, H. & Qiu, C. W. Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018).

    Article  ADS  Google Scholar 

  167. Peng, Y. G., Li, Y., Cao, P. C., Zhu, X. F. & Qiu, C. W. 3D printed meta‐helmet for wide‐angle thermal camouflages. Adv. Funct. Mater. 30, 2002061 (2020).

    Article  Google Scholar 

  168. Wang, J., Yang, F., Xu, L. & Huang, J. Omnithermal restructurable metasurfaces for both infrared-light illusion and visible-light similarity. Phys. Rev. Appl. 14, 014008 (2020).

    Article  ADS  Google Scholar 

  169. Fan, S. & Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photon. 16, 182–190 (2022).

    Article  ADS  Google Scholar 

  170. Harrison, A. W. & Walto, M. R. Radiative cooling in TiO2 white paint. Sol. Energy 20, 185–188 (1978).

    Article  ADS  Google Scholar 

  171. Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014). This work experimentally achieved daytime radiative cooling (using the joint effect of thermal conduction, convection and radiation), which substantially promoted the practical applications of thermal metamaterials.

    Article  ADS  Google Scholar 

  172. Zhai, Y. et al. Scalable-manufactured randomized glass–polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    Article  ADS  Google Scholar 

  173. Torrent, D., Poncelet, O. & Batsale, J. C. Nonreciprocal thermal material by spatiotemporal modulation. Phys. Rev. Lett. 120, 125501 (2018).

    Article  ADS  Google Scholar 

  174. Zhao, W. et al. Temporally-adjustable radiative thermal diode based on metal–insulator phase change. Int. J. Heat. Mass Transf. 185, 122443 (2022).

    Article  Google Scholar 

  175. Yang, F., Xu, L., Wang, J. & Huang, J. Transformation theory for spatiotemporal metamaterials. Phys. Rev. Appl. 18, 034080 (2022).

    Article  ADS  Google Scholar 

  176. Xu, L. et al. Thermal Willis coupling in spatiotemporal diffusive metamaterials. Phys. Rev. Lett. 129, 155901 (2022).

    Article  ADS  Google Scholar 

  177. Li, J. et al. Reciprocity of thermal diffusion in time-modulated systems. Nat. Commun. 13, 167 (2022).

    Article  ADS  Google Scholar 

  178. Xu, L., Huang, J. & Ouyang, X. Tunable thermal wave nonreciprocity by spatiotemporal modulation. Phys. Rev. E 103, 032128 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  179. Xing, G., Zhao, W., Hu, R. & Luo, X. Spatiotemporal modulation of thermal emission from thermal-hysteresis vanadium dioxide for multiplexing thermotronics functionalities. Chin. Phys. Lett. 38, 124401 (2021).

    Article  ADS  Google Scholar 

  180. Ordonez-Miranda, J., Guo, Y., Alvarado-Gil, J. J., Volz, S. & Nomura, M. Thermal-wave diode. Phys. Rev. Appl. 16, L041002 (2021).

    Article  ADS  Google Scholar 

  181. Camacho, M., Edwards, B. & Engheta, N. Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials. Nat. Commun. 11, 3733 (2020).

    Article  ADS  Google Scholar 

  182. Li, Y. et al. Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett. 115, 195503 (2015). This work extended transformation thermotics theory to nonlinear cases with thermally responsive thermal conductivity.

    Article  ADS  Google Scholar 

  183. Xu, L. J. et al. Blackhole-inspired thermal trapping with graded heat-conduction metadevices. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwac159 (2023).

    Article  Google Scholar 

  184. Anufriev, R., Ramiere, A., Maire, J. & Nomura, M. Heat guiding and focusing using ballistic phonon transport in phononic nanostructures. Nat. Commun. 8, 15505 (2017).

    Article  ADS  Google Scholar 

  185. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, 1501524 (2016).

    Article  ADS  Google Scholar 

  186. Ezawa, M. Quench dynamics and bulk–edge correspondence in nonlinear mechanical systems. J. Phys. Soc. Jpn 90, 114605 (2021).

    Article  ADS  Google Scholar 

  187. Zhou, X., Wang, Y., Leykam, D. & Chong, Y. D. Optical isolation with nonlinear topological photonics. N. J. Phys. 19, 095002 (2017).

    Article  Google Scholar 

  188. Liu, C. S. et al. The nontrivial states in one-dimensional nonlinear bichromatic superlattices. Phys. E 90, 183–188 (2017).

    Article  Google Scholar 

  189. Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    Article  ADS  Google Scholar 

  190. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  ADS  Google Scholar 

  191. Hang, C., Zezyulin, D. A., Huang, G. & Konotop, V. V. Nonlinear topological edge states in a non-Hermitian array of optical waveguides embedded in an atomic gas. Phys. Rev. A 103, L040202 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  192. Kirsch, M. S. et al. Nonlinear second-order photonic topological insulators. Nat. Phys. 17, 995–1000 (2021).

    Article  Google Scholar 

  193. Ezawa, M. Nonlinear non-Hermitian higher-order topological laser. Phys. Rev. Res. 4, 013195 (2022).

    Article  Google Scholar 

  194. Hu, Z. et al. Nonlinear control of photonic higher-order topological bound states in the continuum. Light. Sci. Appl. 10, 164 (2021).

    Article  ADS  Google Scholar 

  195. Bhalla, P. Intrinsic contribution to nonlinear thermoelectric effects in topological insulators. Phys. Rev. B 103, 115304 (2021).

    Article  ADS  Google Scholar 

  196. Yuan, Q. et al. Giant enhancement of nonlinear harmonic generation in a silicon topological photonic crystal nanocavity chain. Laser Photonics Rev. 16, 2100269 (2022).

    Article  ADS  Google Scholar 

  197. Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).

    Article  ADS  Google Scholar 

  198. Ezawa, M. Dynamical nonlinear higher-order non-Hermitian skin effects and topological trap-skin phase. Phys. Rev. B 105, 125421 (2022).

    Article  ADS  Google Scholar 

  199. Chen, S. et al. Broadband optical and microwave nonlinear response in topological insulator. Opt. Mater. Express 4, 587–596 (2014).

    Article  ADS  Google Scholar 

  200. Hadad, Y., Khanikaev, A. B. & Alù, A. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B 93, 155112 (2016).

    Article  ADS  Google Scholar 

  201. Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  202. Fernandez-Hurtado, V., Garcia-Vidal, F. J., Fan, S. & Cuevas, J. C. Enhancing near-field radiative heat transfer with Si-based metasurfaces. Phys. Rev. Lett. 118, 203901 (2017).

    Article  ADS  Google Scholar 

  203. Du, W. et al. Super-Planckian near-field heat transfer between hyperbolic metamaterials. Nano Energy 78, 105264 (2020).

    Article  Google Scholar 

  204. Schittny, R. et al. Invisibility cloaking in light‐scattering media. Laser Photonics Rev. 10, 382–408 (2016).

    Article  ADS  Google Scholar 

  205. Zhang, Z., Xu, L. & Huang, J. Controlling chemical waves by transforming transient mass transfer. Adv. Theory Simul. 5, 2100375 (2022).

    Article  Google Scholar 

  206. Restrepo-Flórez, J. M. & Maldovan, M. Metamaterial membranes. J. Phys. D 50, 025104 (2017).

    Article  ADS  Google Scholar 

  207. Restrepo-Flórez, J. M. & Maldovan, M. Mass diffusion cloaking and focusing with metamaterials. Appl. Phys. Lett. 111, 071903 (2017).

    Article  ADS  Google Scholar 

  208. Zhou, X., Xu, G. & Zhang, H. Binary masses manipulation with composite bilayer metamaterial. Compos. Struct. 267, 113866 (2021).

    Article  Google Scholar 

  209. Liu, M., Song, D., Wang, X., Sun, C. & Jing, D. Asymmetric two-layer porous membrane for gas separation. J. Phys. Chem. Lett. 11, 6359–6363 (2020).

    Article  Google Scholar 

  210. Chen, X. et al. Tailoring the microporosity of polymers of intrinsic microporosity for advanced gas separation by atomic layer deposition. Angew. Chem. Int. Ed. 60, 17875–17880 (2021).

    Article  ADS  Google Scholar 

  211. Li, Y. et al. Scattering cancellation by a monolayer cloak in oxide dispersion‐strengthened alloys. Adv. Funct. Mater. 30, 2003270 (2020).

    Article  Google Scholar 

  212. Xu, L., Dai, G., Wang, G. & Huang, J. Geometric phase and bilayer cloak in macroscopic particle-diffusion systems. Phys. Rev. E 102, 032140 (2020).

    Article  ADS  Google Scholar 

  213. Lieberman, M. A. & Lichtenberg, A. J. Principles of Plasma Discharges and Materials Processing (Wiley Interscience, 2005).

  214. Zheng, B., Fu, Y., Wang, K., Schuelke, T. & Fan, Q. H. Electron dynamics in radio frequency magnetron sputtering argon discharges with a dielectric target. Plasma Sources Sci. Technol. 30, 035019 (2021).

    Article  ADS  Google Scholar 

  215. Cui, S. et al. Hollow cathode effect modified time-dependent global model and high-power impulse magnetron sputtering discharge and transport in cylindrical cathode. J. Appl. Phys. 125, 063302 (2019).

    Article  ADS  Google Scholar 

  216. Huang, C.-W., Chen, Y.-C. & Nishimura, Y. Particle-in-cell simulation of plasma sheath dynamics with kinetic ions. IEEE Trans. Plasma Sci. 43, 675–682 (2015).

    Article  ADS  Google Scholar 

  217. Bottino, A. & Sonnendrücker, E. Monte Carlo particle-in-cell methods for the simulation of the Vlasov–Maxwell gyrokinetic equations. J. Plasma Phys. 81, 435810501 (2015).

    Article  Google Scholar 

  218. Tskhakaya, D., Matyash, K., Schneider, R. & Taccogna, F. The particle-in-cell method. Contrib. Plasma Phys. 47, 563–594 (2007).

    Article  ADS  Google Scholar 

  219. Zeng, Y., Liu, J. & Werner, D. H. General properties of two-dimensional conformal transformation in electrostatics. Opt. Express 19, 20035–20047 (2011).

    Article  ADS  Google Scholar 

  220. Rodríguez, J. A. et al. Inverse design of plasma metamaterial devices for optical computing. Phys. Rev. Appl. 16, 014023 (2021).

    Article  ADS  Google Scholar 

  221. Sakai, O. & Tachibana, K. Plasmas as metamaterials: a review. Plasma Sources Sci. Technol. 21, 013001 (2012).

    Article  ADS  Google Scholar 

  222. Navarro, R., Liard, L. & Sokoloff, J. Effects of a low pressure plasma on a negative-permeability metamaterial. J. Appl. Phys. 126, 163304 (2019).

    Article  ADS  Google Scholar 

  223. Zeng, L., Tian, X.-L., Li, Y.-P., Zhang, D. & Zhang, H.-F. A solid state plasma multifunctional metamaterial and its application for energy absorbing and cross polarization conversion. IEEE Access 8, 205646–205656 (2020).

    Article  Google Scholar 

  224. Levchenko, I., Xu, S., Cherkun, O., Baranov, O. & Bazaka, K. Plasma meets metamaterials: three ways to advance space micropropulsion systems. Adv. Phys. X 6, 1834452 (2020).

    Google Scholar 

  225. Gandolfi, M., Giannetti, C. & Banfi, F. Temperonic crystal: a superlattice for temperature waves in graphene. Phys. Rev. Lett. 125, 265901 (2020).

    Article  ADS  Google Scholar 

  226. Hu, R. & Luo, X. Two-dimensional phonon engineering triggers microscale thermal functionalities. Natl Sci. Rev. 6, 1071–1073 (2019).

    Article  Google Scholar 

  227. Canbazoglu, F. M., Vemuri, K. P. & Bandaru, P. R. Estimating interfacial thermal conductivity in metamaterials through heat flux mapping. Appl. Phys. Lett. 106, 143904 (2015).

    Article  ADS  Google Scholar 

  228. Xu, L., Huang, J., Jiang, T., Zhang, L. & Huang, J. Thermally invisible sensors. Europhys. Lett. 132, 14002 (2020).

    Article  Google Scholar 

  229. Wang, C. Q., Xu, L. J., Jiang, T., Zhang, L. & Huang, J. P. Multithermally invisible cloaks and sensors with complex shapes. Europhys. Lett. 133, 20009 (2021).

    Article  ADS  Google Scholar 

  230. Feng, L., El-Ganainy, R. & Ge, L. Non-Hermitian photonics based on parity–time symmetry. Nat. Photon. 11, 752–762 (2017).

    Article  ADS  Google Scholar 

  231. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  232. Pilozzi, L., Farrelly, F. A., Marcucci, G. & Conti, C. Machine learning inverse problem for topological photonics. Commun. Phys. 1, 57 (2018).

    Article  Google Scholar 

  233. Long, Y., Ren, J. & Chen, H. Unsupervised manifold clustering of topological phononics. Phys. Rev. Lett. 124, 185501 (2020).

    Article  ADS  Google Scholar 

  234. Zhang, P., Shen, H. & Zhai, H. Machine learning topological invariants with neural networks. Phys. Rev. Lett. 120, 066401 (2018).

    Article  ADS  Google Scholar 

  235. Gao, Q. et al. Fast crystal growth at ultra-low temperatures. Nat. Mater. 20, 1431–1439 (2021).

    Article  ADS  Google Scholar 

  236. Baranov, D. G. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).

    Article  ADS  Google Scholar 

  237. Cummer, S. A. & Schurig, D. One path to acoustic cloaking. New J. Phys. 9, 45–45 (2007).

    Article  ADS  Google Scholar 

  238. Cummer, S. A., Christensen, J. & Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 1, 16001 (2016).

    Article  ADS  Google Scholar 

  239. Chen, H. & Chan, C. T. Acoustic cloaking in three dimensions using acoustic metamaterials. Appl. Phys. Lett. 91, 183518 (2007).

    Article  ADS  Google Scholar 

  240. Farhat, M., Guenneau, S. & Enoch, S. Ultrabroadband elastic cloaking in thin plates. Phys. Rev. Lett. 103, 024301 (2009).

    Article  ADS  Google Scholar 

  241. Brule, S., Javelaud, E. H., Enoch, S. & Guenneau, S. Experiments on seismic metamaterials: molding surface waves. Phys. Rev. Lett. 112, 133901 (2014).

    Article  ADS  Google Scholar 

  242. Dede, E. M., Schmalenberg, P., Nomura, T. & Ishigaki, M. Design of anisotropic thermal conductivity in multilayer printed circuit boards. IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1763–1774 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China under grants no. 11725521, 12035004 and 12125504 and from the Science and Technology Commission of Shanghai Municipality under grant no. 20JC1414700.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. researched data for the article. Z.Z., L.X., J.-H.J. and J.H. contributed substantially to discussion of the content. All authors wrote the article. J.-H.J. and J.H. reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Jian-Hua Jiang or Jiping Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bulk–edge correspondence

A topological phenomenon that means that the topological properties of the bulk of the system determine the character of the edge modes.

Concentrator

A structure that creates a larger flow (for example, heat flow) inside a device without disturbing the external fields (for example, temperature distribution) in the surrounding area.

Cloak

A structure that provides a zero gradient (for example, temperature gradient) inside a device without disturbing the external fields (for example, temperature distribution) in the surrounding area.

Darcy’s law

An equation to describe slow and viscous fluid flow. This equation is usually applied to describe fluids in porous media.

Diffusive Fizeau drag

The observation that wavelike temperature fields propagate at different speeds in opposite directions when an orthogonal advection is applied. It is analogous to the Fizeau drag observed in electromagnetic fields moving through flowing water.

Geometric phase

The phase difference obtained when a system completes one cycle of an adiabatic process, which is caused by the geometrical properties of the Hamiltonian parameter space.

Reynolds number

A dimensionless quantity that is used to classify the flow type as laminar (values less than 1) or turbulent (values more than 1).

Rotator

A structure that changes the transport direction of the flow (for example, heat flow) inside a device without disturbing the external fields (for example, temperature distribution) in the surrounding area.

Scattering cancellation

An approach that designs coatings that can be applied to objects to cancel the scattering, making the object invisible to observers.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Xu, L., Qu, T. et al. Diffusion metamaterials. Nat Rev Phys 5, 218–235 (2023). https://doi.org/10.1038/s42254-023-00565-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-023-00565-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing