Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Review
  • Published:

Ionic gate spectroscopy of 2D semiconductors

Abstract

Reliable and precise measurements of the relative energy of band edges in 2D semiconductors are needed to determine band gaps and band offsets, as well as to establish the band diagram of devices and heterostructures. However, commonly employed techniques such as optical studies and scanning tunnelling microscopy need to be accompanied by modelling for quantitative results. Over the last decade, ionic gate spectroscopy has emerged as a technique that can quantitatively determine the relative alignment of band edges of 2D semiconductors directly from transport measurements. The technique relies on the extremely large geometrical capacitance of ionic gated devices that, under suitable conditions, enables a change in gate voltage to be directly related to a shift in chemical potential. Here, we present an overview of ionic gate spectroscopy and illustrate its relevance with applications to different 2D semiconductors and their heterostructures.

Key points

  • The capacitance of ionic gates is two to three orders of magnitude larger than that of gates commonly used in most of the experiments in the field of 2D materials.

  • Owing to the large geometrical capacitance of ionic gates, a change in gate voltage gives rise to an equal change in chemical potential within the band gap of a semiconductor.

  • Ionic gate spectroscopy allows the semiconducting band gap to be determined in a simple and reliable manner, directly from the transfer characteristics of a transistor, without the need for data modelling.

  • Ionic gate spectroscopy straightforwardly enables the precise determination of the relative band offsets between different semiconductors, a task commonly difficult to achieve.

  • Ionic gate spectroscopy is a relatively young technique that is ideally suited to probe and characterize 2D semiconducting materials and their heterostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of transistor characteristics upon increasing gate capacitance.
Fig. 2: Determination of the band gap.
Fig. 3: Precision and reliability of ionic gate spectroscopy.
Fig. 4: Gap values for common 2D semiconductors.
Fig. 5: Band alignment in different semiconductors.

Similar content being viewed by others

References

  1. Bardeen, J. in Nobel Lectures in Physics 1942–1962 (Elsevier, 1964).

  2. Brattain, W. H. & Garrett, C. G. B. Experiments on the interface between germanium and an electrolyte. Bell Syst. Tech. J. 34, 129–176 (1955).

    Article  Google Scholar 

  3. Kim, S. H. et al. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25, 1822–1846 (2013).

    Article  Google Scholar 

  4. Fujimoto, T. & Awaga, K. Electric-double-layer field-effect transistors with ionic liquids. Phys. Chem. Chem. Phys. 15, 8983–9006 (2013).

    Article  Google Scholar 

  5. Bisri, S. Z., Shimizu, S., Nakano, M. & Iwasa, Y. Endeavor of iontronics: from fundamentals to applications of ion-controlled electronics. Adv. Mater. 29, 1607054 (2017).

    Article  Google Scholar 

  6. Krüger, M., Buitelaar, M. R., Nussbaumer, T., Schönenberger, C. & Forró, L. Electrochemical carbon nanotube field-effect transistor. Appl. Phys. Lett. 78, 1291–1293 (2001).

    Article  ADS  Google Scholar 

  7. Rosenblatt, S. et al. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2, 869–872 (2002).

    Article  ADS  Google Scholar 

  8. Nilsson, D. et al. Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51–54 (2002).

    Article  ADS  Google Scholar 

  9. Panzer, M. J., Newman, C. R. & Frisbie, C. D. Low-voltage operation of a pentacene field-effect transistor with a polymer electrolyte gate dielectric. Appl. Phys. Lett. 86, 103503 (2005).

    Article  ADS  Google Scholar 

  10. Shimotani, H., Diguet, G. & Iwasa, Y. Direct comparison of field-effect and electrochemical doping in regioregular poly(3-hexylthiophene). Appl. Phys. Lett. 86, 022104 (2005).

    Article  ADS  Google Scholar 

  11. Misra, R., McCarthy, M. & Hebard, A. F. Electric field gating with ionic liquids. Appl. Phys. Lett. 90, 2005–2008 (2007).

    Article  Google Scholar 

  12. Xia, Y., Cho, J., Paulsen, B., Frisbie, C. D. & Renn, M. J. Correlation of on-state conductance with referenced electrochemical potential in ion gel gated polymer transistors. Appl. Phys. Lett. 94, 013304 (2009).

    Article  ADS  Google Scholar 

  13. Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7, 855–858 (2008).

    Article  ADS  Google Scholar 

  14. Yamada, Y. et al. Electrically induced ferromagnetism at room temperature in cobalt-doped titanium dioxide. Science 332, 1065–1067 (2011).

    Article  ADS  Google Scholar 

  15. Ueno, K. et al. Discovery of superconductivity in KTaO3 by electrostatic carrier doping. Nat. Nanotechnol. 6, 408–412 (2011).

    Article  ADS  Google Scholar 

  16. Sohier, T. et al. Enhanced electron-phonon interaction in multivalley materials. Phys. Rev. X 9, 031019 (2019).

    Google Scholar 

  17. Ono, S., Miwa, K., Seki, S. & Takeya, J. A comparative study of organic single-crystal transistors gated with various ionic-liquid electrolytes. Appl. Phys. Lett. 94, 063301 (2009).

    Article  ADS  Google Scholar 

  18. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  19. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  20. Ye, J. T. et al. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9, 125–128 (2010).

    Article  ADS  Google Scholar 

  21. Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  ADS  Google Scholar 

  22. Jo, S., Costanzo, D., Berger, H. & Morpurgo, A. F. Electrostatically induced superconductivity at the surface of WS2. Nano Lett. 15, 1197–1202 (2015).

    Article  ADS  Google Scholar 

  23. Shi, W. et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).

    Article  ADS  Google Scholar 

  24. Biscaras, J., Chen, Z., Paradisi, A. & Shukla, A. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide. Nat. Commun. 6, 8826 (2015).

    Article  ADS  Google Scholar 

  25. Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 11, 339–344 (2016).

    Article  ADS  Google Scholar 

  26. Costanzo, D., Zhang, H., Reddy, B. A., Berger, H. & Morpurgo, A. F. Tunnelling spectroscopy of gate-induced superconductivity in MoS2. Nat. Nanotechnol. 13, 483–488 (2018).

    Article  ADS  Google Scholar 

  27. Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl Acad. Sci. USA 115, 3551–3556 (2018).

    Article  ADS  Google Scholar 

  28. Piatti, E. et al. Multi-valley superconductivity in ion-gated MoS2 layers. Nano Lett. 18, 4821–4830 (2018).

    Article  ADS  Google Scholar 

  29. Kouno, S. et al. Superconductivity at 38 K at an electrochemical interface between an ionic liquid and FeSe0.8Te0.2 on various substrates. Sci. Rep. 8, 14731 (2018).

    Article  ADS  Google Scholar 

  30. Zeng, J. et al. Gate-induced interfacial superconductivity in 1T-SnSe2. Nano Lett. 18, 1410–1415 (2018).

    Article  ADS  Google Scholar 

  31. Piatti, E. et al. Ambipolar suppression of superconductivity by ionic gating in optimally doped BaFe2(As,P)2 ultrathin films. Phys. Rev. Mater. 3, 044801 (2019).

    Article  Google Scholar 

  32. Liang, L. et al. Inducing ferromagnetism and Kondo effect in platinum by paramagnetic ionic gating. Sci. Adv. 4, eaar2030 (2018).

    Article  ADS  Google Scholar 

  33. Luryi, S. Quantum capacitance devices. Appl. Phys. Lett. 52, 501–503 (1988).

    Article  ADS  Google Scholar 

  34. Davies, J. H. The Physics of Low-dimensional Semiconductors: An Introduction (Cambridge Univ. Press, 1997).

  35. Ilani, S., Donev, La. K., Kindermann, M. & McEuen, P. L. Measurement of the quantum capacitance of interacting electrons in carbon nanotubes. Nat. Phys. 2, 687–691 (2006).

    Article  Google Scholar 

  36. Xia, J., Chen, F., Li, J. & Tao, N. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 4, 505–509 (2009).

    Article  ADS  Google Scholar 

  37. Ihn, T. Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford Univ. Press, 2010).

  38. Braga, D., Gutiérrez Lezama, I., Berger, H. & Morpurgo, A. F. Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett. 12, 5218–5223 (2012).

    Article  ADS  Google Scholar 

  39. Zhang, Y., Ye, J., Matsuhashi, Y. & Iwasa, Y. Ambipolar MoS2 thin flake transistors. Nano Lett. 12, 1136–1140 (2012).

    Article  ADS  Google Scholar 

  40. Ubrig, N., Jo, S., Berger, H., Morpurgo, A. F. & Kuzmenko, A. B. Scanning photocurrent microscopy reveals electron-hole asymmetry in ionic liquid-gated WS2 transistors. Appl. Phys. Lett. 104, 171112 (2014).

    Article  ADS  Google Scholar 

  41. Ovchinnikov, D. et al. Disorder engineering and conductivity dome in ReS2 with electrolyte gating. Nat. Commun. 7, 12391 (2016).

    Article  ADS  Google Scholar 

  42. Zhang, Y. J., Oka, T., Suzuki, R., Ye, J. T. & Iwasa, Y. Electrically switchable chiral light-emitting transistor. Science 344, 725–728 (2014).

    Article  ADS  Google Scholar 

  43. Jo, S., Ubrig, N., Berger, H., Kuzmenko, A. B. & Morpurgo, A. F. Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14, 2019–2025 (2014).

    Article  ADS  Google Scholar 

  44. Ponomarev, E., Gutierrez-Lezama, I., Ubrig, N. & Morpurgo, A. F. Ambipolar light-emitting transistors on chemical vapor deposited monolayer MoS2. Nano Lett. 15, 8289–8294 (2015).

    Article  ADS  Google Scholar 

  45. Gutiérrez-Lezama, I., Reddy, B. A., Ubrig, N. & Morpurgo, A. F. Electroluminescence from indirect band gap semiconductor ReS2. 2D Mater. 3, 045016 (2016).

    Article  Google Scholar 

  46. Lezama, I. G. et al. Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals. 2D Mater. 1, 021002 (2014).

    Article  Google Scholar 

  47. Ponomarev, E., Ubrig, N., Gutiérrez-Lezama, I., Berger, H. & Morpurgo, A. F. Semiconducting van der Waals interfaces as artificial semiconductors. Nano Lett. 18, 5146–5152 (2018).

    Article  ADS  Google Scholar 

  48. Saito, Y. & Iwasa, Y. Ambipolar insulator-to-metal transition in black phosphorus by ionic-liquid gating. ACS Nano 9, 3192–3198 (2015).

    Article  Google Scholar 

  49. Ciarrocchi, A., Avsar, A., Ovchinnikov, D. & Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9, 919 (2018).

    Article  ADS  Google Scholar 

  50. Zhang, H., Berthod, C., Berger, H., Giamarchi, T. & Morpurgo, A. F. Band filling and cross quantum capacitance in ion-gated semiconducting transition metal dichalcogenide monolayers. Nano Lett. 19, 8836–8845 (2019).

    Article  ADS  Google Scholar 

  51. Reddy, B. A. et al. Synthetic semimetals with van der Waals interfaces. Nano Lett. 20, 1322–1328 (2020).

    Article  ADS  Google Scholar 

  52. Piatti, E., Pasquarelli, A. & Gonnelli, R. S. Orientation-dependent electric transport and band filling in hole co-doped epitaxial diamond films. Appl. Surf. Sci. 528, 146795 (2020).

    Article  Google Scholar 

  53. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  54. Ruppert, C., Aslan, O. B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).

    Article  ADS  Google Scholar 

  55. Klots, A. R. et al. Probing excitonic states in suspended two-dimensional semiconductors by photocurrent spectroscopy. Sci. Rep. 4, 6608 (2014).

    Article  Google Scholar 

  56. Lezama, I. G. et al. Indirect-to-direct band gap crossover in few-layer MoTe2. Nano Lett. 15, 2336–2342 (2015).

    Article  ADS  Google Scholar 

  57. Hanbicki, A. T., Currie, M., Kioseoglou, G., Friedman, A. L. & Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 203, 16–20 (2015).

    Article  ADS  Google Scholar 

  58. Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015).

    Article  ADS  Google Scholar 

  59. Wang, G. et al. Giant enhancement of the optical second-harmonic emission of WSe2 monolayers by laser excitation at exciton resonances. Phys. Rev. Lett. 114, 097403 (2015).

    Article  ADS  Google Scholar 

  60. Hill, H. M. et al. Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett. 15, 2992–2997 (2015).

    Article  ADS  Google Scholar 

  61. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Article  ADS  Google Scholar 

  62. Yore, A. E. et al. Large array fabrication of high performance monolayer MoS2 photodetectors. Appl. Phys. Lett. 111, 043110 (2017).

    Article  ADS  Google Scholar 

  63. Lu, C. P., Li, G., Mao, J., Wang, L. M. & Andrei, E. Y. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett. 14, 4628–4633 (2014).

    Article  ADS  Google Scholar 

  64. Zhang, C., Johnson, A., Hsu, C. L., Li, L. J. & Shih, C. K. Direct imaging of band profile in single layer MoS2 on graphite: quasiparticle energy gap, metallic edge states, and edge band bending. Nano Lett. 14, 2443–2447 (2014).

    Article  ADS  Google Scholar 

  65. Chiu, M. H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 6, 7666 (2015).

    Article  ADS  Google Scholar 

  66. Huang, Y. L. et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 6, 6298 (2015).

    Article  ADS  Google Scholar 

  67. Rigosi, A. F., Hill, H. M., Rim, K. T., Flynn, G. W. & Heinz, T. F. Electronic band gaps and exciton binding energies in monolayer MoxW1−xS2 transition metal dichalcogenide alloys probed by scanning tunneling and optical spectroscopy. Phys. Rev. B 94, 075440 (2016).

    Article  ADS  Google Scholar 

  68. Hill, H. M., Rigosi, A. F., Rim, K. T., Flynn, G. W. & Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 16, 4831–4837 (2016).

    Article  ADS  Google Scholar 

  69. He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    Article  ADS  Google Scholar 

  70. Ugeda, M. M. et al. Observation of giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article  ADS  Google Scholar 

  71. Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  72. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    Article  ADS  Google Scholar 

  73. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  74. Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

    Article  Google Scholar 

  75. Stroscio, J. A. & Kaiser, W. J. (eds) Scanning Tunneling Microscopy (Elsevier, 1993).

  76. Feenstra, R. M. & Stroscio, J. A. Tunneling spectroscopy of the GaAs(110) surface. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 5, 923–929 (1987).

    Article  ADS  Google Scholar 

  77. Park, S. et al. Direct determination of monolayer MoS2 and WSe2 exciton binding energies on insulating and metallic substrates. 2D Mater. 5, 025003 (2018).

    Article  Google Scholar 

  78. Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article  ADS  Google Scholar 

  79. Cucchi, I. et al. Microfocus laser-angle-resolved photoemission on encapsulated mono-, bi-, and few-layer 1T′-WTe2. Nano Lett. 19, 554–560 (2019).

    Article  ADS  Google Scholar 

  80. Hamer, M. J. et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano 13, 2136–2142 (2019).

    Google Scholar 

  81. Riley, J. M. et al. Negative electronic compressibility and tunable spin splitting in WSe2. Nat. Nanotechnol. 10, 1043–1047 (2015).

    Article  ADS  Google Scholar 

  82. Kim, B. S. et al. Possible electric field induced indirect to direct band gap transition in MoSe2. Sci. Rep. 7, 5206 (2017).

    Article  ADS  Google Scholar 

  83. Kang, M. et al. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 17, 1610–1615 (2017).

    Article  ADS  Google Scholar 

  84. Katoch, J. et al. Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nat. Phys. 14, 355–359 (2018).

    Article  Google Scholar 

  85. Nguyen, P. V. et al. Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature 572, 220–223 (2019).

    Article  Google Scholar 

  86. Kouwenhoven, L. P. et al. in Mesoscopic Electron Transport (eds Sohn, L. L., Kouwenhoven, L. P. & Schön, G.) 105–214 (Springer, 1997) https://doi.org/10.1007/978-94-015-8839-3_4

  87. Shimotani, H. et al. Continuous band-filling control and one-dimensional transport in metallic and semiconducting carbon nanotube tangled films. Adv. Funct. Mater. 24, 3305–3311 (2014).

    Article  Google Scholar 

  88. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Article  ADS  Google Scholar 

  89. Podzorov, V., Gershenson, M. E., Kloc, C., Zeis, R. & Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84, 3301–3303 (2004).

    Article  ADS  Google Scholar 

  90. Ramasubramaniam, A., Naveh, D. & Towe, E. Tunable band gaps in bilayer transition-metal dichalcogenides. Phys. Rev. B 84, 205325 (2011).

    Article  ADS  Google Scholar 

  91. Brumme, T., Calandra, M. & Mauri, F. First-principles theory of field-effect doping in transition-metal dichalcogenides: structural properties, electronic structure, Hall coefficient, and electrical conductivity. Phys. Rev. B 91, 155436 (2015).

    Article  ADS  Google Scholar 

  92. Shimotani, H. et al. Gate capacitance in electrochemical transistor of single-walled carbon nanotube. Appl. Phys. Lett. 88, 073104 (2006).

    Article  ADS  Google Scholar 

  93. Bard, A. J. & Faulkner, L. R. Electrochemical Methods (Wiley, 2000) https://books.google.com/books/about/Electrochemical_Methods.html?hl=fr&id=kv56QgAACAAJ

  94. Xu, H., Fathipour, S., Kinder, E. W., Seabaugh, A. C. & Fullerton-Shirey, S. K. Reconfigurable ion gating of 2H-MoTe2 field-effect transistors using poly(ethylene oxide)-CsClO4 solid polymer electrolyte. ACS Nano 9, 4900–4910 (2015).

    Article  Google Scholar 

  95. Prakash, A. & Appenzeller, J. Bandgap extraction and device analysis of ionic liquid gated WSe2 Schottky barrier transistors. ACS Nano 11, 1626–1632 (2017).

    Article  Google Scholar 

  96. Ponomarev, E. et al. Hole transport in exfoliated monolayer MoS2. ACS Nano 12, 2669–2676 (2018).

    Article  Google Scholar 

  97. Vasu, K. S. et al. Opening of large band gaps in metallic carbon nanotubes by mannose-functionalized dendrimers: experiments and theory. J. Mater. Chem. C 6, 6483–6488 (2018).

    Article  Google Scholar 

  98. Yomogida, Y. et al. Ambipolar organic single-crystal transistors based on ion gels. Adv. Mater. 24, 4392–4397 (2012).

    Article  Google Scholar 

  99. Rösner, M. et al. Two-dimensional heterojunctions from nonlocal manipulations of the interactions. Nano Lett. 16, 2322–2327 (2016).

    Article  ADS  Google Scholar 

  100. Cho, Y. & Berkelbach, T. C. Environmentally sensitive theory of electronic and optical transitions in atomically thin semiconductors. Phys. Rev. B 97, 041409 (2018).

    Article  ADS  Google Scholar 

  101. Waldecker, L. et al. Rigid band shifts in two-dimensional semiconductors through external dielectric screening. Phys. Rev. Lett. 123, 206403 (2019).

    Article  ADS  Google Scholar 

  102. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  103. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  104. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    Article  ADS  Google Scholar 

  105. Aretouli, K. E. et al. Epitaxial 2D SnSe2/2D WSe2 van der Waals heterostructures. ACS Appl. Mater. Interfaces 8, 23222–23229 (2016).

    Article  Google Scholar 

  106. Yan, X. et al. Tunable SnSe2/WSe2 heterostructure tunneling field effect transistor. Small 13, 1701478 (2017).

    Article  Google Scholar 

  107. Jeong, J. et al. Suppression of metal-insulator transition in VO2 by electric field-induced oxygen vacancy formation. Science 339, 1402–1405 (2013).

    Article  ADS  Google Scholar 

  108. Fête, A., Rossi, L., Augieri, A. & Senatore, C. Ionic liquid gating of ultra-thin YBa2Cu3O7−x films. Appl. Phys. Lett. 109, 192601 (2016).

    Article  ADS  Google Scholar 

  109. Scherwitzl, R. et al. Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22, 5517–5520 (2010).

    Article  Google Scholar 

  110. Wang, H. et al. Scattering mechanisms and mobility enhancement in epitaxial BaSnO3 thin films probed via electrolyte gating. APL Mater. 8, 071113 (2020).

    Article  ADS  Google Scholar 

  111. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  ADS  Google Scholar 

  112. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    Article  ADS  Google Scholar 

  113. Guo, Y. & Robertson, J. Band structure, band offsets, substitutional doping, and Schottky barriers of bulk and monolayer InSe. Phys. Rev. Mater. 1, 044004 (2017).

    Article  Google Scholar 

  114. Ye, J. et al. Accessing the transport properties of graphene and its multilayers at high carrier density. Proc. Natl Acad. Sci. USA 108, 13002–13006 (2011).

    Article  ADS  Google Scholar 

  115. Gonnelli, R. S. et al. Weak localization in electric-double-layer gated few-layer graphene. 2D Mater. 4, 035006 (2017).

    Article  Google Scholar 

  116. Yin, L. et al. Ferroelectric-induced carrier modulation for ambipolar transition metal dichalcogenide transistors. Appl. Phys. Lett. 110, 123106 (2017).

    Article  ADS  Google Scholar 

  117. Seo, S. G., Hong, J. H., Ryu, J. H. & Jin, S. H. Low-frequency noise characteristics in multilayer MoTe2 FETs with hydrophobic amorphous fluoropolymers. IEEE Electron Device Lett. 40, 251–254 (2019).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge Alexandre Ferreira for his continuous and precious technical support over the years. We acknowledge the scientific contributions of several former and current group members who have been actively involved in the development of the technique: Daniele Braga, Sanghyun Jo, Marc Philippi, Aditya Reddy and Haijing Zhang. Financial support from the Swiss National Science Foundation and from the European Union Graphene Flagship Project is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Alberto F. Morpurgo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Renato Gonnelli, Erik Piatti and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Lezama, I., Ubrig, N., Ponomarev, E. et al. Ionic gate spectroscopy of 2D semiconductors. Nat Rev Phys 3, 508–519 (2021). https://doi.org/10.1038/s42254-021-00317-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00317-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing