Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Solution-state nuclear magnetic resonance spectroscopy of crystalline cellulosic materials using a direct dissolution ionic liquid electrolyte

Abstract

Owing to its high sustainable production capacity, cellulose represents a valuable feedstock for the development of more sustainable alternatives to currently used fossil fuel-based materials. Chemical analysis of cellulose remains challenging, and analytical techniques have not advanced as fast as the development of the proposed materials science applications. Crystalline cellulosic materials are insoluble in most solvents, which restricts direct analytical techniques to lower-resolution solid-state spectroscopy, destructive indirect procedures or to ‘old-school’ derivatization protocols. While investigating their use for biomass valorization, tetralkylphosphonium ionic liquids (ILs) exhibited advantageous properties for direct solution-state nuclear magnetic resonance (NMR) analysis of crystalline cellulose. After screening and optimization, the IL tetra-n-butylphosphonium acetate [P4444][OAc], diluted with dimethyl sulfoxide-d6, was found to be the most promising partly deuterated solvent system for high-resolution solution-state NMR. The solvent system has been used for the measurement of both 1D and 2D experiments for a wide substrate scope, with excellent spectral quality and signal-to-noise, all with modest collection times. The procedure initially describes the scalable syntheses of an IL, in 24–72 h, of sufficient purity, yielding a stock electrolyte solution. The dissolution of cellulosic materials and preparation of NMR samples is presented, with pretreatment, concentration and dissolution time recommendations for different sample types. Also included is a set of recommended 1D and 2D NMR experiments with parameters optimized for an in-depth structural characterization of cellulosic materials. The time required for full characterization varies between a few hours and several days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of the IL electrolyte [P4444][OAc]:DMSO-d6 (1:4 wt%) and dissolution of cellulose samples.
Fig. 2: Comparison of the obtainable resolution in cellulose NMR investigation of the presented quantitative solution-state NMR protocol and commonly performed solid-state CP MAS NMR protocol for MCC (Avicel PH-101).
Fig. 3: Preferred dissolution setup for the NMR sample preparation.
Fig. 4: Quantitative 1H spectrum ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C, 600 MHz) of MCC (Avicel PH-101, 5 wt%).
Fig. 5: Suppressing (editing-out) resonances of low-molecular-weight compounds in the 1H spectra by diffusion editing.
Fig. 6: Multiplicity-edited HSQC spectrum ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C) of MCC (Avicel PH-101, 5 wt%).
Fig. 7: Qualitative 13C spectrum ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C, 150 MHz) of MCC (Avicel PH-101, 5 wt%).
Fig. 8: Quantitative 13C spectrum ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C, 150 MHz) of MCC (Avicel PH-101, 5 wt%).
Fig. 9: HSQC–TOCSY spectrum (short range, 15 ms TOCSY mixing time) with a multiplicity-edited HSQC overlay ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C) of MCC (Avicel PH-101, 5 wt%).
Fig. 10: HMBC spectrum ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C) of MCC (Avicel PH-101, 5 wt%).
Fig. 11: Resolution of key signals in the technical cellulose backbone spectral regions.
Fig. 12: Application of the initial NMR experiments to distinguish between covalent modifications and impurities in cellulose chemistry.
Fig. 13: Utility of single and multiple bond 2D heteronuclear-correlated spectroscopy (HSQC and HMBC) in the assignment of a TEMPO-oxidized cellulose nanocrystal ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C, 5 wt%, 600 MHz 1H frequency).
Fig. 14: 1D NMR spectra ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C, 2.5 wt%, 600 MHz) for ‘Asplund’ wood (spruce fibers produced through low-energy thermomechanical refining).

Similar content being viewed by others

Data availability

The data related to the results shown in this protocol are included in this document and in the supporting primary research papers25,26.

References

  1. MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Sixta, H. Handbook of Pulp (Wiley-VCH, 2006).

  3. Szcześniak, L., Rachocki, A. & Tritt-Goc, J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 15, 445–451 (2008).

    Article  Google Scholar 

  4. Li, C. et al. Fiber-based biopolymer processing as a route toward sustainability. Adv. Mater. 34, 2105196 (2022).

    Article  CAS  Google Scholar 

  5. Ning, P. et al. Recent advances in the valorization of plant biomass. Biotechnol. Biofuels 14, 102 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mussatto, S. I. Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery (Elsevier, 2016).

  7. Robertson, G. P. et al. Cellulosic biofuel contributions to a sustainable energy future: choices and outcomes. Science 356, 1349 (2017).

    Article  CAS  Google Scholar 

  8. Hassan, N. S., Jalil, A. A., Hitam, C. N. C., Vo, D. V. N. & Nabgan, W. Biofuels and renewable chemicals production by catalytic pyrolysis of cellulose: a review. Environ. Chem. Lett. 18, 1625–1648 (2020).

    Article  CAS  Google Scholar 

  9. Dufresne, A. Nanocellulose: a new ageless bionanomaterial. Mater. Today 16, 220–227 (2013).

    Article  CAS  Google Scholar 

  10. Li, T. et al. Developing fibrillated cellulose as a sustainable technological material. Nature 590, 47–56 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Eyley, S. & Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 6, 7764–7779 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Rule, G. S. & Hitchens, T. K. Fundamentals of Protein NMR Spectroscopy (Springer-Verlag, 2006).

  13. Chary, K. V. R. & Govil, G. NMR in Biological Systems (Springer, 2008).

  14. Claridge, T. D. W. High-Resolution NMR Techniques in Organic Chemistry (Elsevier, 2016).

  15. Medronho, B., Romano, A., Miguel, M. G., Stigsson, L. & Lindman, B. Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions. Cellulose 19, 581–587 (2012).

    Article  CAS  Google Scholar 

  16. Heinze, T. & Koschella, A. Solvents applied in the field of cellulose chemistry: a mini review. Polímeros 15, 84–90 (2005).

    Article  CAS  Google Scholar 

  17. Swatloski, R. P., Spear, S. K., Holbrey, J. D. & Rogers, R. D. Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, S. et al. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green. Chem. 8, 325–327 (2006).

    Article  CAS  Google Scholar 

  19. Liebert, T. F., Heinze, T. J. & Edgar, K. J. (eds.) Cellulose Solvents: for Analysis, Shaping and Chemical Modification (American Chemical Society, 2010).

  20. Cheng, K., Sorek, H., Zimmermann, H., Wemmer, D. E. & Pauly, M. Solution-state 2D NMR spectroscopy of plant cell walls enabled by a dimethylsulfoxide-d6/1-ethyl-3-methylimidazolium acetate solvent. Anal. Chem. 85, 3213–3221 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kuroda, K., Kunimura, H., Fukaya, Y. & Ohno, H. 1H NMR analysis of cellulose dissolved in non-deuterated ionic liquids. Cellulose 21, 2199–2206 (2014).

    Article  CAS  Google Scholar 

  22. Moulthrop, J. S., Swatloski, R. P., Moyna, G. & Rogers, R. D. High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem. Commun. 28, 1557–1559 (2005).

    Article  Google Scholar 

  23. Holding, A. J., Heikkilä, M., Kilpeläinen, I. & King, A. W. T. Amphiphilic and phase-separable ionic liquids for biomass processing. ChemSusChem 7, 1422–1434 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Holding, A. J. et al. Solution-state one- and two-dimensional NMR spectroscopy of high-molecular-weight cellulose. ChemSusChem 9, 880–892 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. King, A. W. T. et al. Liquid-state NMR analysis of nanocelluloses. Biomacromolecules 19, 2708–2720 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Koso, T. et al. 2D assignment and quantitative analysis of cellulose and oxidized celluloses using solution-state NMR spectroscopy. Cellulose 27, 7929–7953 (2020).

    Article  CAS  Google Scholar 

  27. Heise, K. et al. Knoevenagel condensation for modifying the reducing end groups of cellulose nanocrystals. ACS Macro Lett. 8, 1642–1647 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Delepierre, G. et al. Challenges in synthesis and analysis of asymmetrically grafted cellulose nanocrystals via atom transfer radical polymerization. Biomacromolecules 22, 2702–2717 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. King, A. W. T. et al. Relative and inherent reactivities of imidazolium-based ionic liquids: the implications for lignocellulose processing applications. RSC Adv. 2, 8020–8026 (2012).

    Article  CAS  Google Scholar 

  30. Clough, M. T., Geyer, K., Hunt, P. A., Mertes, J. & Welton, T. Thermal decomposition of carboxylate ionic liquids: trends and mechanisms. Phys. Chem. Chem. Phys. 15, 20480–20495 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Ebner, G., Schiehser, S., Potthast, A. & Rosenau, T. Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett. 49, 7322–7324 (2008).

    Article  CAS  Google Scholar 

  32. Clough, M. T. et al. Ionic liquids: not always innocent solvents for cellulose. Green. Chem. 17, 231–243 (2015).

    Article  CAS  Google Scholar 

  33. Liebert, T. & Heinze, T. Interaction of ionic liquids with polysaccharides of cellulose. 5. Solvents React. media Modif. Bioresour. 3, 576–601 (2008).

    Google Scholar 

  34. Rico Del Cerro, D. et al. On the mechanism of the reactivity of 1,3-dialkylimidazolium salts under basic to acidic conditions: a combined kinetic and computational study. Angew. Chem. Int. Ed. Engl. 57, 11613–11617 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Zweckmair, T. et al. On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 1—analysis, acetylating agent, influence of water, and mechanistic considerations. Cellulose 22, 3583–3596 (2015).

    Article  CAS  Google Scholar 

  36. Abushammala, H. et al. On the mechanism of the unwanted acetylation of polysaccharides by 1,3-dialkylimidazolium acetate ionic liquids: part 2—the impact of lignin on the kinetics of cellulose acetylation. Cellulose 24, 2767–2774 (2017).

    Article  CAS  Google Scholar 

  37. Yasaka, Y., Ueno, M. & Kimura, Y. Chemisorption of carbon dioxide in carboxylate-functionalized ionic liquids: a mechanistic study. Chem. Lett. 43, 626–628 (2014).

    Article  CAS  Google Scholar 

  38. Klemm, D., Philipp, B., Heinze, T., Heinze, U. & Wagenknecht, W. Comprehensive Cellulose Chemistry. Volume 1: Fundamentals and Analytical Methods (Wiley, 1998).

  39. Klemm, D., Philipp, B., Heinze, T., Heinze, U. & Wagenknecht, W. Comprehensive Cellulose Chemistry. Volume 2: Functionalization of Cellulose (Wiley, 1998).

  40. Rosenau, T., Potthast, A. & Hell, J. (eds) Cellulose Science and Technology. Chemistry, Analysis, and Applications (John Wiley & Sons, 2018).

  41. Follain, N., Marais, M.-F., Montanari, S. & Vignon, M. R. Coupling onto surface carboxylated cellulose nanocrystals. Polymer 51, 5332–5344 (2010).

    Article  CAS  Google Scholar 

  42. Lavoine, N., Bras, J., Saito, T. & Isogai, A. Improvement of the thermal stability of TEMPO-oxidized cellulose nanofibrils by heat-induced conversion of ionic bonds to amide bonds. Macromol. Rapid Comm. 37, 1033–1039 (2016).

    Article  CAS  Google Scholar 

  43. Sadeghifar, H., Filpponen, I., Clarke, S. P., Brougham, D. F. & Argyropoulos, D. S. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J. Mater. Sci. 46, 7344–7355 (2011).

    Article  CAS  Google Scholar 

  44. Wei, L. et al. Chemical modification of nanocellulose with canola oil fatty acid methyl ester. Carbohyd. Polym. 169, 108–116 (2017).

    Article  CAS  Google Scholar 

  45. Hettrich, K., Pinnow, M., Volkert, B., Passauer, L. & Fischer, S. Novel aspects of nanocellulose. Cellulose 21, 2479–2488 (2014).

    Article  CAS  Google Scholar 

  46. Chen, J., Huang, M., Kong, L. & Lin, M. Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohyd. Polym. 205, 596–600 (2019).

    Article  CAS  Google Scholar 

  47. Benkaddour, A., Journoux-Lapp, C., Jradi, K., Robert, S. & Daneault, C. Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: amidation and esterification process. J. Mater. Sci. 49, 2832–2843 (2014).

    Article  CAS  Google Scholar 

  48. Bendahou, A., Hajlane, A., Dufresne, A., Boufi, S. & Kaddami, H. Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res. Chem. Intermed. 41, 4293–4310 (2015).

    Article  CAS  Google Scholar 

  49. Le Gars, M., Delvart, A., Roger, P., Belgacem, M. N. & Bras, J. Amidation of TEMPO-oxidized cellulose nanocrystals using aromatic aminated molecules. Colloid Polym. Sci. 298, 603–617 (2020).

    Article  Google Scholar 

  50. Shard, A. G. in Characterization of Nanoparticles (eds Hodoroaba, V.-D., Unger, W. E. S. & Shard, A. G.) 349–371 (Elsevier, 2020).

  51. Vaca-Garcia, C., Borredon, M. E. & Gaseta, A. Determination of the degree of substitution (DS) of mixed cellulose esters by elemental analysis. Cellulose 8, 225–231 (2001).

    Article  CAS  Google Scholar 

  52. Filpponen, I. & Argyropoulos, D. S. Regular linking of cellulose nanocrystals via click chemistry: synthesis and formation of cellulose nanoplatelet gels. Biomacromolecules 11, 1060–1066 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Heise, K. et al. Chemical modification of reducing end-groups in cellulose nanocrystals. Angw. Chem. Int. Ed. Engl. 60, 66–87 (2021).

    Article  CAS  Google Scholar 

  54. Montanari, S., Roumani, M., Heux, L. & Vignon, M. R. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation. Macromolecules 38, 1665–1671 (2005).

    Article  CAS  Google Scholar 

  55. Saito, T. & Isogai, A. TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5, 1983–1989 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Zhao, H. & Heindel, N. D. Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm. Res. 8, 400–402 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Azzam, F., Galliot, M., Putaux, J.-L., Heux, L. & Jean, B. Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 22, 3701–3714 (2015).

    Article  CAS  Google Scholar 

  58. Bohrn, R. et al. The FDAM method: determination of carboxyl profiles in cellulosic materials by combining group-selective fluorescence labeling with GPC. Biomacromolecules 7, 1743–1750 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Röhrling, J. et al. A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Valid. Appl. Biomacromolecules 3, 969–975 (2002).

    Article  Google Scholar 

  60. Röhrling, J. et al. A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 1. Method Dev. Biomacromolecules 3, 959–968 (2002).

    Article  Google Scholar 

  61. Pines, A., Gibby, M. G. & Waugh, J. S. Proton‐enhanced nuclear induction spectroscopy. a method for high resolution NMR of dilute spins in solids. J. Chem. Phys. 56, 1776–1777 (1972).

    Article  CAS  Google Scholar 

  62. Schaefer, J. & Stejskal, E. O. Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J. Am. Chem. Soc. 98, 1031–1032 (1976).

    Article  CAS  Google Scholar 

  63. Newman, R. H., Davies, L. M. & Harris, P. J. Solid-state 13C nuclear magnetic resonance characterization of cellulose in the cell walls of Arabidopsis thaliana leaves. Plant Physiol. 111, 475–485 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Larsson, P. T., Wickholm, K. & Iversen, T. A CP/MAS13C NMR investigation of molecular ordering in celluloses. Carbohyd. Res. 302, 19–25 (1997).

    Article  CAS  Google Scholar 

  65. Kono, H. et al. CP/MAS 13C NMR study of cellulose and cellulose derivatives. 1. Complete assignment of the CP/MAS 13C NMR spectrum of the native cellulose. J. Am. Chem. Soc. 124, 7506–7511 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Foston, M. Advances in solid-state NMR of cellulose. Curr. Opin. Biotech. 27, 176–184 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Newman, R. H. Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11, 45–52 (2004).

    Article  CAS  Google Scholar 

  68. Simmons, T. J. et al. Folding of xylan onto cellulose fibrils in plant cell walls revealed by solid-state NMR. Nat. Commun. 7, 13902 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Knicker, H., Velasco-Molina, M. & Knicker, M. 2D solid-state HETCOR 1H-13C NMR experiments with variable cross polarization times as a tool for a better understanding of the chemistry of cellulose-based pyrochars—a tutorial. Appl. Sci. 11, 8569 (2021).

    Article  CAS  Google Scholar 

  70. King, A. W. T., Kilpeläinen, I., Heikkinen, S., Järvi, P. & Argyropoulos, D. S. Hydrophobic interactions determining functionalized lignocellulose solubility in dialkylimidazolium chlorides, as probed by 31P NMR. Biomacromolecules 10, 458–463 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Liebert, T., Hussain, M. A. & Heinze, T. Structure determination of cellulose esters via subsequent functionalization and NMR spectroscopy. Macromol. Symp. 223, 79–92 (2005).

    Article  CAS  Google Scholar 

  72. Goodlett, V. W., Dougherty, J. T. & Patton, H. W. Characterization of cellulose acetates by nuclear magnetic resonance. J. Polym. Sci. A1 9, 155–161 (1971).

    Article  CAS  Google Scholar 

  73. Kono, H., Hashimoto, H. & Shimizu, Y. NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity. Carbohyd. Polym. 118, 91–100 (2015).

    Article  CAS  Google Scholar 

  74. Ludwig, C. H., Nist, B. J. & McCarthy, J. L. Lignin. XIII. 1 the high resolution nuclear magnetic resonance spectroscopy of protons in acetylated lignins. J. Am. Chem. Soc. 86, 1196–1202 (1964).

    Article  CAS  Google Scholar 

  75. Nimz, H. H., Robert, D., Faix, O. & Nemr, M. Carbon-13 NMR spectra of lignins, 8. structural differences between lignins of hardwoods, softwoods, grasses and compression wood. Holzforschung 35, 16–26 (1981).

    Article  CAS  Google Scholar 

  76. Mansfield, S. D., Kim, H., Lu, F. & Ralph, J. Whole plant cell wall characterization using solution-state 2D NMR. Nat. Protoc. 7, 1579–1589 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Jiang, N., Pu, Y. & Ragauskas, A. J. Rapid determination of lignin content via direct dissolution and ¹H NMR analysis of plant cell walls. ChemSusChem 3, 1285–1289 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Koso, T. et al. Highly regioselective surface acetylation of cellulose and shaped cellulose constructs in the gas-phase. Green. Chem. 24, 5604–5613 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010).

    Article  CAS  Google Scholar 

  80. ANZMAG. Introduction to the lectures series “Understanding NMR spectroscopy” by Dr James Keeler [Video]. YouTube https://www.youtube.com/watch?v=A502rWNKZyI (2014).

  81. Keeler, J. Understanding NMR Spectroscopy (Wiley, 2002).

  82. UCI Media. Lecture 7. Introduction to NMR Spectroscopy: Concepts and Theory, Part 1. [Video]. YouTube https://www.youtube.com/watch?v=vRHfYWg9GXM&list=PLC86CC98DDF0CDDAC&index=10 (2011).

  83. Pretsch, E., Bühlmann, P. & Affolter, C. Structure Determination of Organic Compounds (Springer-Verlag, 2000).

  84. Organic chemistry data. Hans Reich’s Collection. NMR Spectroscopy https://organicchemistrydata.org/links/#spectroscopy_resources (2020).

  85. Ruokonen, S.-K. et al. Correlation between ionic liquid cytotoxicity and liposome-ionic liquid interactions. Chem. Eur. J. 24, 2669–2680 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Marren, K. Dimethyl sulfoxide: an effective penetration enhancer for topical administration of NSAIDs. Phys. Sportsmed. 39, 75–82 (2011).

    Article  PubMed  Google Scholar 

  87. Wu, D. H., Chen, A. D. & Johnson, C. S. An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson. Ser. A 115, 260–264 (1995).

    Article  CAS  Google Scholar 

  88. Willker, W., Leibfritz, D., Kerssebaum, R. & Bermel, W. Gradient selection in inverse heteronuclear correlation spectroscopy. Magn. Reson. Chem. 31, 287–292 (1993).

    Article  CAS  Google Scholar 

  89. Palmer, A. G., Cavanagh, J., Wright, P. E. & Rance, M. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J. Magn. Reson. 93, 151–170 (1991).

    CAS  Google Scholar 

  90. Kay, L., Keifer, P. & Saarinen, T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J. Am. Chem. Soc. 114, 10663–10665 (1992).

    Article  CAS  Google Scholar 

  91. Schleucher, J. et al. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J. Biomol. NMR 4, 301–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Bax, A. & Summers, M. F. Proton and carbon-13 assignments from sensitivity-enhanced detection of heteronuclear multiple-bond connectivity by 2D multiple quantum NMR. J. Am. Chem. Soc. 108, 2093–2094 (1986).

    Article  CAS  Google Scholar 

  93. Hosoya, T., Bacher, M., Potthast, A., Elder, T. & Rosenau, T. Insights into degradation pathways of oxidized anhydroglucose units in cellulose by β-alkoxy-elimination: a combined theoretical and experimental approach. Cellulose 25, 3797–3814 (2018).

    Article  CAS  Google Scholar 

  94. Pérez, A. D., Fiskari, J. & Schuur, B. Delignification of low-energy mechanical pulp (Asplund fibers) in a deep eutectic solvent system of choline chloride and lactic acid. Front. Chem. 9, 688291 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Laaksonen, T. et al. WtF-Nano: one-pot dewatering and water-free topochemical modification of nanocellulose in ionic liquids or γ-valerolactone. ChemSusChem 10, 4879–4890 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Beaumont, M. et al. Unique reactivity of nanoporous cellulosic materials mediated by surface-confined water. Nat. Commun. 12, 2513 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. del Cerro, D. R., Koso, T. V., Kakko, T., King, A. W. T. & Kilpeläinen, I. Crystallinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre-treatment with tetrabutylphosphonium acetate. Cellulose 27, 5545–5562 (2020).

    Article  Google Scholar 

  98. Isogai, A., Hänninen, T., Fujisawa, S. & Saito, T. Review: catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog. Polym. Sci. 86, 122–148 (2018).

    Article  CAS  Google Scholar 

  99. Li, M.-C., Mei, C., Xu, X., Lee, S. & Wu, Q. Cationic surface modification of cellulose nanocrystals: toward tailoring dispersion and interface in carboxymethyl cellulose films. Polymer 107, 200–210 (2016).

    Article  CAS  Google Scholar 

  100. El-Faham, A. & Albericio, F. Peptide coupling reagents, more than a letter soup. Chem. Rev. 111, 6557–6602 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Mackin, R. T. et al. Synthesis and characterization of TEMPO-oxidized peptide-cellulose conjugate biosensors for detecting human neutrophil elastase. Cellulose 29, 1293–1305 (2022).

    Article  CAS  Google Scholar 

  102. Kilpeläinen, I. et al. Dissolution of wood in ionic liquids. J. Agr. Food Chem. 55, 9142–9148 (2007).

    Article  Google Scholar 

  103. Kyllönen, L. et al. On the solubility of wood in non-derivatising ionic liquids. Green. Chem. 15, 2374–2378 (2013).

    Article  Google Scholar 

  104. Deb, S. et al. Application of mild autohydrolysis to facilitate the dissolution of wood chips in direct-dissolution solvents. Green. Chem. 18, 3286–3294 (2016).

    Article  CAS  Google Scholar 

  105. Fiskari, J. et al. Deep eutectic solvent delignification to low-energy mechanical pulp to produce papermaking fibers. Bioresources 15, 6023–6032 (2020).

    Article  CAS  Google Scholar 

  106. Holding, A. J. et al. Efficiency of hydrophobic phosphonium ionic liquids and DMSO as recyclable cellulose dissolution and regeneration media. RSC Adv. 7, 17451–17461 (2017).

    Article  CAS  Google Scholar 

  107. Khanjani, P. et al. Superhydrophobic paper from nanostructured fluorinated cellulose esters. ACS Appl. Mater. Inter. 10, 11280–11288 (2018).

    Article  CAS  Google Scholar 

  108. Reyes, G., Borghei, M., King, A. W. T., Lahti, J. & Rojas, O. J. Solvent welding and imprinting cellulose nanofiber films using ionic liquids. Biomacromolecules 20, 502–514 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Niu, X. et al. Plasticized cellulosic films by partial esterification and welding in low-concentration ionic liquid electrolyte. Biomacromolecules 20, 2105–2114 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Reyes, G. et al. Coaxial spinning of all-cellulose systems for enhanced toughness: filaments of oxidized nanofibrils sheathed in cellulose II regenerated from a protic ionic liquid. Biomacromolecules 21, 878–891 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Beaumont, M. et al. Assembling native elementary cellulose nanofibrils via a reversible and regioselective surface functionalization. J. Am. Chem. Soc. 143, 17040–17046 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kono, H., Oka, C., Kishimoto, R. & Fujita, S. NMR characterization of cellulose acetate: mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances. Carbohyd. Polym. 170, 23–32 (2017).

    Article  CAS  Google Scholar 

  113. Kono, H., Fujita, S. & Tajima, K. NMR characterization of methylcellulose: chemical shift assignment and mole fraction of monomers in the polymer chains. Carbohyd. Polym. 157, 728–738 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge the fundamental contributions of A. Holding, V. Mäkelä and S. Heikkinen in the early stages of the development of this method. A.W.T.K. gratefully acknowledges funding by the Academy of Finland (project no. 311255, ‘WTF-Click-Nano’). K.H. gratefully acknowledges the postdoctoral grant received from the Academy of Finland (project no. 333905).

Author information

Authors and Affiliations

Authors

Contributions

A.W.T.K and T.K., designed and developed the workflows presented in this protocol. L.F., K.H. and M.H. implemented the protocol in a more technology-orientated environment and addressed the occurring translational barriers. L.F. and A.R.T. contributed optimized metathesis schemes for the ionic liquid starting from commercial sources. S.H. provided solid-state NMR spectra and expertise. D.R.d.C. and J.F. provided samples, discussion and experimentation regarding the adaptation of the protocol to other substrates, as presented in the ‘Anticipated results’ section. L.F. and A.W.T.K. drafted, reviewed and edited the manuscript with significant input from K.H., T.K. and M.H. I.K. provided funding for the basic research (initial articles) and advice on presentation of the subject matter. All authors read and agreed on the final version of the manuscript.

Corresponding authors

Correspondence to Michael Hummel or Alistair W. T. King.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Peer review

Peer review information

Nature Protocols thanks Jun Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

King, A. W. T. et al. Biomacromolecules 19, 2708–2720 (2018): https://doi.org/10.1021/acs.biomac.8b00295

Koso, T. et al. Cellulose 27, 7929–7953 (2020): https://doi.org/10.1007/s10570-020-03317-0

Extended data

Extended Data Fig. 1 Multiplicity-edited HSQC of acetylated MCC.

Multiplicity-edited HSQC of acetylated MCC showing significant peak superposition ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C, 5 wt%; 600 MHz 1H frequency. For multiplicity edited HSQC green = CH, blue = CH2).

Extended Data Fig. 2 Effect of diffusing-editing on the 1H 1D data for surface acetylated MCC.

Comparison of the quantitative 1H spectrum (a) with the diffusion edited 1H spectrum (b) allows to quickly assess the introduction of functionalities of species exhibiting resonances in the heavily crowded IL spectral region ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C, 5 wt%; 600 MHz 1H frequency).

Extended Data Fig. 3 Utility of the 2D HSQC-TOCSY experiment for further peak assignment of cellulose derivatives.

(a) HSQC-TOCSY in the full view allows to further assign the AGA moiety over interactions of the C1 signal with peaks in the crowded areas., (b) HSQC-TOCSY with zoom into the C2–C5 region shows that full characterisation of the spin system can be possible. However, owing to strong superpositions with the AGU, NRE and RE moieties the peak assignments can become tedious. Spectra shown with diffusion-edited 1H trace (top trace) and 13C trace (left trace). AGU = anhydroglucose unit; AGA = anhydroglucopyranosiduronic acid unit; NRE = non-reducing end; RE = reducing end. In the spectra HSQC correlations are shown in green (CH) and blue (CH2) and TOCSY correlations are shown in gray.

Extended Data Fig. 4 Diffusion-edited 1H spectra of food insects.

Diffusion-edited 1H spectra ([P4444][OAc]:DMSO-d6 1:4 wt%, 65 °C, 5 wt%, 600 MHz) for fruit flies, damselfly tail and whole food crickets, after Wiley milling and dissolution.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Note.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fliri, L., Heise, K., Koso, T. et al. Solution-state nuclear magnetic resonance spectroscopy of crystalline cellulosic materials using a direct dissolution ionic liquid electrolyte. Nat Protoc 18, 2084–2123 (2023). https://doi.org/10.1038/s41596-023-00832-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-023-00832-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing