Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Significance of bystander T cell activation in microbial infection

Abstract

During microbial infection, pre-existing memory CD8+ T cells that are not specific for the infecting pathogens can be activated by cytokines without cognate antigens, termed bystander activation. Studies in mouse models and human patients demonstrate bystander activation of memory CD8+ T cells, which exerts either protective or detrimental effects on the host, depending on the infection model or disease. Research has elucidated mechanisms underlying the bystander activation of CD8+ T cells in terms of the responsible cytokines and the effector mechanisms of bystander-activated CD8+ T cells. In this Review, we describe the history of research on bystander CD8+ T cell activation as well as evidence of bystander activation. We also discuss the mechanisms and immunopathological roles of bystander activation in various microbial infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Effector functions triggered by IL-15- or IL-12 plus IL-18-mediated bystander activation of memory CD8+ T cells.
Fig. 2: Bystander-activated memory CD8+ T cells contribute to liver damage during acute HAV infection.

Similar content being viewed by others

References

  1. Zhang, N. & Bevan, M. J. CD8+ T cells: foot soldiers of the immune system. Immunity 35, 161–168 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Whiteside, S. K., Snook, J. P., Williams, M. A. & Weis, J. J. Bystander T cells: a balancing act of friends and foes. Trends Immunol. 39, 1021–1035 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature 557, 575–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Kim, T. S. & Shin, E. C. The activation of bystander CD8+ T cells and their roles in viral infection. Exp. Mol. Med. 51, 1–9 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. Lee, H. G., Cho, M. Z. & Choi, J. M. Bystander CD4+ T cells: crossroads between innate and adaptive immunity. Exp. Mol. Med. 52, 1255–1263 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tough, D. F., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996). This is among the earliest demonstrations of memory CD8+ T cell bystander activation that is induced by type I interferons.

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, X., Sun, S., Hwang, I., Tough, D. F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Zarozinski, C. C. & Welsh, R. M. Minimal bystander activation of CD8 T cells during the virus-induced polyclonal T cell response. J. Exp. Med. 185, 1629–1639 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ehl, S., Hombach, J., Aichele, P., Hengartner, H. & Zinkernagel, R. M. Bystander activation of cytotoxic T cells: studies on the mechanism and evaluation of in vivo significance in a transgenic mouse model. J. Exp. Med. 185, 1241–1251 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998). References 8–10 are early reports demonstrating bystander-activated memory CD8+ T cells that showed limited biological significance in mouse models of LCMV infection.

    Article  CAS  PubMed  Google Scholar 

  11. Chen, H. D. et al. Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nat. Immunol. 2, 1067–1076 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Brehm, M. A. et al. T cell immunodominance and maintenance of memory regulated by unexpectedly cross-reactive pathogens. Nat. Immunol. 3, 627–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Welsh, R. M. & Selin, L. K. No one is naive: the significance of heterologous T-cell immunity. Nat. Rev. Immunol. 2, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Rehermann, B. & Shin, E. C. Private aspects of heterologous immunity. J. Exp. Med. 201, 667–670 (2005). References 13 and 14 are detailed reviews on CD8+ T cell cross-reactivity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lertmemongkolchai, G., Cai, G., Hunter, C. A. & Bancroft, G. J. Bystander activation of CD8+ T cells contributes to the rapid production of IFN-γ in response to bacterial pathogens. J. Immunol. 166, 1097–1105 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Raue, H. P., Brien, J. D., Hammarlund, E. & Slifka, M. K. Activation of virus-specific CD8+ T cells by lipopolysaccharide-induced IL-12 and IL-18. J. Immunol. 173, 6873–6881 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Beadling, C. & Slifka, M. K. Differential regulation of virus-specific T-cell effector functions following activation by peptide or innate cytokines. Blood 105, 1179–1186 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Raue, H. P., Beadling, C., Haun, J. & Slifka, M. K. Cytokine-mediated programmed proliferation of virus-specific CD8+ memory T cells. Immunity 38, 131–139 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Ge, C. et al. Bystander activation of pulmonary Trm cells attenuates the severity of bacterial pneumonia by enhancing neutrophil recruitment. Cell Rep. 29, 4236–4244 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Berg, R. E., Crossley, E., Murray, S. & Forman, J. Memory CD8+ T cells provide innate immune protection against Listeria monocytogenes in the absence of cognate antigen. J. Exp. Med. 198, 1583–1593 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Freeman, B. E., Hammarlund, E., Raue, H. P. & Slifka, M. K. Regulation of innate CD8+ T-cell activation mediated by cytokines. Proc. Natl Acad. Sci. USA 109, 9971–9976 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chu, T. et al. Bystander-activated memory CD8 T cells control early pathogen load in an innate-like, NKG2D-dependent manner. Cell Rep. 3, 701–708 (2013). This study reports that bystander-activated memory CD8+ T cells exert innate-like cytotoxicity contributing to early elimination of pathogens in a mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sckisel, G. D. et al. Influenza infection results in local expansion of memory CD8+ T cells with antigen non-specific phenotype and function. Clin. Exp. Immunol. 175, 79–91 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. Crosby, E. J., Goldschmidt, M. H., Wherry, E. J. & Scott, P. Engagement of NKG2D on bystander memory CD8 T cells promotes increased immunopathology following Leishmania major infection. PLoS Pathog. 10, e1003970 (2014). This study shows a detrimental role of bystander-activated CD8+ T cells recruited at the infection sites during mouse Leishmania infection.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reynolds, J. M. & Dong, C. Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol. 34, 511–519 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Salerno, F., Guislain, A., Cansever, D. & Wolkers, M. C. TLR-mediated innate production of IFN-γ by CD8+ T cells is independent of glycolysis. J. Immunol. 196, 3695–3705 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Whiteside, S. K. et al. IL-10 deficiency reveals a role for TLR2-dependent bystander activation of T cells in Lyme arthritis. J. Immunol. 200, 1457–1470 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Low, J. S. et al. Tissue-resident memory T cell reactivation by diverse antigen-presenting cells imparts distinct functional responses. J. Exp. Med. 217, e20192291 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doisne, J. M. et al. CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection. J. Immunol. 173, 2410–2418 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bastidas, S. et al. CD8+ T cells are activated in an antigen-independent manner in HIV-infected individuals. J. Immunol. 192, 1732–1744 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Younes, S. A. et al. IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection. J. Clin. Invest. 126, 2745–2756 (2016). This study reports that proliferating memory CD8+ T cells during HIV-1 infection exhibit a highly diverse TCR repertoire.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Odumade, O. A. et al. Primary Epstein–Barr virus infection does not erode preexisting CD8+ T cell memory in humans. J. Exp. Med. 209, 471–478 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ely, K. H. et al. Nonspecific recruitment of memory CD8+ T cells to the lung airways during respiratory virus infections. J. Immunol. 170, 1423–1429 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Tuuminen, T. et al. Human CD8+ T cell memory generation in Puumala hantavirus infection occurs after the acute phase and is associated with boosting of EBV-specific CD8+ memory T cells. J. Immunol. 179, 1988–1995 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Kohlmeier, J. E., Cookenham, T., Roberts, A. D., Miller, S. C. & Woodland, D. L. Type I interferons regulate cytolytic activity of memory CD8+ T cells in the lung airways during respiratory virus challenge. Immunity 33, 96–105 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Piet, B. et al. CD8+ T cells with an intraepithelial phenotype upregulate cytotoxic function upon influenza infection in human lung. J. Clin. Invest. 121, 2254–2263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lindgren, T. et al. Longitudinal analysis of the human T cell response during acute hantavirus infection. J. Virol. 85, 10252–10260 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Port, J. R. et al. Severe human Lassa fever is characterized by nonspecific T-cell activation and lymphocyte homing to inflamed tissues. J. Virol. 94, e01367-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sandalova, E. et al. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans. PLoS Pathog. 6, e1001051 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shin, E. C., Sung, P. S. & Park, S. H. Immune responses and immunopathology in acute and chronic viral hepatitis. Nat. Rev. Immunol. 16, 509–523 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Maini, M. K. et al. The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. J. Exp. Med. 191, 1269–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Alanio, C. et al. Bystander hyperactivation of preimmune CD8+ T cells in chronic HCV patients. Elife 4, e07916 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Herndler-Brandstetter, D. et al. Post-thymic regulation of CD5 levels in human memory T cells is inversely associated with the strength of responsiveness to interleukin-15. Hum. Immunol. 72, 627–631 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, Y. et al. Dominance of the CD4+ T helper cell response during acute resolving hepatitis A virus infection. J. Exp. Med. 209, 1481–1492 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lemon, S. M., Ott, J. J., Van Damme, P. & Shouval, D. Type A viral hepatitis: A summary and update on the molecular virology, epidemiology, pathogenesis and prevention. J. Hepatol. 68, 167–184 (2017).

  46. Kim, J. et al. Innate-like cytotoxic function of bystander-activated CD8+ T cells is associated with liver injury in acute hepatitis A. Immunity 48, 161–173 (2018). This study demonstrates TCR-independent IL-15-induced activation of bystander memory CD8+ T cells that exert NKG2D-dependent cytotoxicity during acute HAV infection.

    Article  CAS  PubMed  Google Scholar 

  47. Miller, J. D. et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28, 710–722 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Seo, I. H. et al. IL-15 enhances CCR5-mediated migration of memory CD8. T cells by upregulating CCR5 expression in the absence of TCR stimulation. Cell. Rep. 36, 109438 (2021). This study demonstrates upregulation of CCR5 by IL-15 mediates the migration of bystander-activated memory CD8. T cells.

    Article  CAS  PubMed  Google Scholar 

  49. Weng, N. P., Liu, K., Catalfamo, M., Li, Y. & Henkart, P. A. IL-15 is a growth factor and an activator of CD8 memory T cells. Ann. N. Y. Acad. Sci. 975, 46–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Setoguchi, R. IL-15 boosts the function and migration of human terminally differentiated CD8+ T cells by inducing a unique gene signature. Int. Immunol. 28, 293–305 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Waldmann, T. A. & Tagaya, Y. The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu. Rev. Immunol. 17, 19–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Waldmann, T. A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Jabri, B. & Abadie, V. IL-15 functions as a danger signal to regulate tissue-resident T cells and tissue destruction. Nat. Rev. Immunol. 15, 771–783 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mao, Y. et al. IL-15 activates mTOR and primes stress-activated gene expression leading to prolonged antitumor capacity of NK cells. Blood 128, 1475–1489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Deshpande, P. et al. IL-7- and IL-15-mediated TCR sensitization enables T cell responses to self-antigens. J. Immunol. 190, 1416–1423 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Richer, M. J. et al. Inflammatory IL-15 is required for optimal memory T cell responses. J. Clin. Invest. 125, 3477–3490 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu, K., Catalfamo, M., Li, Y., Henkart, P. A. & Weng, N. P. IL-15 mimics T cell receptor crosslinking in the induction of cellular proliferation, gene expression, and cytotoxicity in CD8+ memory T cells. Proc. Natl Acad. Sci. USA 99, 6192–6197 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Correia, M. P. et al. Hepatocytes and IL-15: a favorable microenvironment for T cell survival and CD8+ T cell differentiation. J. Immunol. 182, 6149–6159 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Correia, M. P., Costa, A. V., Uhrberg, M., Cardoso, E. M. & Arosa, F. A. IL-15 induces CD8+ T cells to acquire functional NK receptors capable of modulating cytotoxicity and cytokine secretion. Immunobiology 216, 604–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Balin, S. J. et al. Human antimicrobial cytotoxic T lymphocytes, defined by NK receptors and antimicrobial proteins, kill intracellular bacteria. Sci. Immunol. 3, eaat7668 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ostler, T., Pircher, H. & Ehl, S. ‘Bystander’ recruitment of systemic memory T cells delays the immune response to respiratory virus infection. Eur. J. Immunol. 33, 1839–1848 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Crosby, E. J., Clark, M., Novais, F. O., Wherry, E. J. & Scott, P. Lymphocytic choriomeningitis virus expands a population of NKG2D+CD8+ T cells that exacerbates disease in mice coinfected with Leishmania major. J. Immunol. 195, 3301–3310 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Soudja, S. M., Ruiz, A. L., Marie, J. C. & Lauvau, G. Inflammatory monocytes activate memory CD8+ T and innate NK lymphocytes independent of cognate antigen during microbial pathogen invasion. Immunity 37, 549–562 (2012). This study describes two major cytokines, IL-15 and IL-18, that induce bystander activation of memory CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Roberts, A. I. et al. NKG2D receptors induced by IL-15 costimulate CD28-negative effector CTL in the tissue microenvironment. J. Immunol. 167, 5527–5530 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Raulet, D. H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Groh, V. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol. 2, 255–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Verneris, M. R., Karimi, M., Baker, J., Jayaswal, A. & Negrin, R. S. Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells. Blood 103, 3065–3072 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Green, P. H. & Cellier, C. Celiac disease. N. Engl. J. Med. 357, 1731–1743 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    Article  PubMed  Google Scholar 

  73. Okamura, H. et al. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 378, 88–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  74. Nakanishi, K., Yoshimoto, T., Tsutsui, H. & Okamura, H. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev. 12, 53–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Hunter, C. A. et al. Comparison of the effects of interleukin-1α, interleukin-1β and interferon-γ-inducing factor on the production of interferon-γ by natural killer. Eur. J. Immunol. 27, 2787–2792 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Tomura, M. et al. A critical role for IL-18 in the proliferation and activation of NK1.1+CD3− cells. J. Immunol. 160, 4738–4746 (1998).

    Article  CAS  PubMed  Google Scholar 

  77. Kambayashi, T., Assarsson, E., Lukacher, A. E., Ljunggren, H. G. & Jensen, P. E. Memory CD8+ T cells provide an early source of IFN-γ. J. Immunol. 170, 2399–2408 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Smeltz, R. B. Profound enhancement of the IL-12/IL-18 pathway of IFN-γ secretion in human CD8+ memory T cell subsets via IL-15. J. Immunol. 178, 4786–4792 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Maurice, N. J., McElrath, M. J., Andersen-Nissen, E., Frahm, N. & Prlic, M. CXCR3 enables recruitment and site-specific bystander activation of memory CD8+ T cells. Nat. Commun. 10, 4987 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Verbist, K. C., Cole, C. J., Field, M. B. & Klonowski, K. D. A role for IL-15 in the migration of effector CD8 T cells to the lung airways following influenza infection. J. Immunol. 186, 174–182 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Sowell, R. T. et al. IL-15 complexes induce migration of resting memory CD8 T cells into mucosal tissues. J. Immunol. 199, 2536–2546 (2017).

    Article  CAS  PubMed  Google Scholar 

  82. Nolz, J. C. & Harty, J. T. IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking. J. Clin. Invest. 124, 1013–1026 (2014).

  83. Martin, M. D. & Badovinac, V. P. Antigen-dependent and -independent contributions to primary memory CD8 T cell activation and protection following infection. Sci. Rep. 5, 18022 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nikolich-Zugich, J. Ageing and life-long maintenance of T-cell subsets in the face of latent persistent infections. Nat. Rev. Immunol. 8, 512–522 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698 (2021).

    Article  CAS  PubMed  Google Scholar 

  86. Khan, N. et al. Herpesvirus-specific CD8 T cell immunity in old age: cytomegalovirus impairs the response to a coresident EBV infection. J. Immunol. 173, 7481–7489 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Griffiths, S. J. et al. Age-associated increase of low-avidity cytomegalovirus-specific CD8+ T cells that re-express CD45RA. J. Immunol. 190, 5363–5372 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Chiu, W. K., Fann, M. & Weng, N. P. Generation and growth of CD28nullCD8+ memory T cells mediated by IL-15 and its induced cytokines. J. Immunol. 177, 7802–7810 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Morris, S. R. et al. Inflammescent CX3CR1+CD57+CD8+ T cells are generated and expanded by IL-15. JCI Insight 5, e132963 (2020).

  90. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016). This study introduces mouse models that better recapitulate the immune system of human adults in terms of the memory-pool size.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. White, J. T., Cross, E. W. & Kedl, R. M. Antigen-inexperienced memory CD8+ T cells: where they come from and why we need them. Nat. Rev. Immunol. 17, 391–400 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Goldrath, A. W., Bogatzki, L. Y. & Bevan, M. J. Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J. Exp. Med. 192, 557–564 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sosinowski, T. et al. CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J. Immunol. 190, 1936–1947 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, J. Y., Hamilton, S. E., Akue, A. D., Hogquist, K. A. & Jameson, S. C. Virtual memory CD8 T cells display unique functional properties. Proc. Natl Acad. Sci. USA 110, 13498–13503 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Quinn, K. M. et al. Heightened self-reactivity associated with selective survival, but not expansion, of naive virus-specific CD8+ T cells in aged mice. Proc. Natl Acad. Sci. USA 113, 1333–1338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. White, J. T. et al. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat. Commun. 7, 11291 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jacomet, F. et al. Evidence for eomesodermin-expressing innate-like CD8+KIR/NKG2A+ T cells in human adults and cord blood samples. Eur. J. Immunol. 45, 1926–1933 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Quinn, K. M. et al. Metabolic characteristics of CD8+ T cell subsets in young and aged individuals are not predictive of functionality. Nat. Commun. 11, 2857 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rolot, M. et al. Helminth-induced IL-4 expands bystander memory CD8+ T cells for early control of viral infection. Nat. Commun. 9, 4516 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lin, J. S. et al. Virtual memory CD8 T cells expanded by helminth infection confer broad protection against bacterial infection. Mucosal Immunol. 12, 258–264 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Tan, J. T. et al. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J. Exp. Med. 195, 1523–1532 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Akue, A. D., Lee, J. Y. & Jameson, S. C. Derivation and maintenance of virtual memory CD8 T cells. J. Immunol. 188, 2516–2523 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Haluszczak, C. et al. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206, 435–448 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Corbett, A. J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Godfrey, D. I., Uldrich, A. P., McCluskey, J., Rossjohn, J. & Moody, D. B. The burgeoning family of unconventional T cells. Nat. Immunol. 16, 1114–1123 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Legoux, F., Salou, M. & Lantz, O. Unconventional or preset αβ T cells: evolutionarily conserved tissue-resident T cells recognizing nonpeptidic ligands. Annu. Rev. Cell Dev. Biol. 33, 511–535 (2017).

    Article  CAS  PubMed  Google Scholar 

  108. van Wilgenburg, B. et al. MAIT cells are activated during human viral infections. Nat. Commun. 7, 11653 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Loh, L. et al. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc. Natl Acad. Sci. USA 113, 10133–10138 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Paquin-Proulx, D. et al. MAIT cells are activated in acute Dengue virus infection and after in vitro Zika virus infection. PLoS Negl. Trop. Dis. 12, e0006154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Ussher, J. E. et al. CD161++CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12 + IL-18 in a TCR-independent manner. Eur. J. Immunol. 44, 195–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Jo, J. et al. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver. PLoS Pathog. 10, e1004210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Rha, M. S. et al. Human liver CD8+ MAIT cells exert TCR/MR1-independent innate-like cytotoxicity in response to IL-15. J. Hepatol. 73, 640–650 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Chakir, H., Lam, D. K., Lemay, A. M. & Webb, J. R. ‘Bystander polarization’ of CD4+ T cells: activation with high-dose IL-2 renders naive T cells responsive to IL-12 and/or IL-18 in the absence of TCR ligation. Eur. J. Immunol. 33, 1788–1798 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Chung, Y. et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30, 576–587 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Guo, L. et al. IL-1 family members and STAT activators induce cytokine production by Th2, Th17, and Th1 cells. Proc. Natl Acad. Sci. USA 106, 13463–13468 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lee, Y. K. et al. TCR-independent functions of Th17 cells mediated by the synergistic actions of cytokines of the IL-12 and IL-1 families. PLoS ONE 12, e0186351 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Polley, R., Zubairi, S. & Kaye, P. M. The fate of heterologous CD4+ T cells during Leishmania donovani infection. Eur. J. Immunol. 35, 498–504 (2005).

    Article  PubMed  Google Scholar 

  119. Guo, L. et al. Innate immunological function of TH2 cells in vivo. Nat. Immunol. 16, 1051–1059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gangappa, S., Deshpande, S. P. & Rouse, B. T. Bystander activation of CD4+ T cells can represent an exclusive means of immunopathology in a virus infection. Eur. J. Immunol. 29, 3674–3682 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Gangappa, S., Deshpande, S. P. & Rouse, B. T. Bystander activation of CD4+ T cells accounts for herpetic ocular lesions. Invest. Ophthalmol. Vis. Sci. 41, 453–459 (2000).

    CAS  PubMed  Google Scholar 

  122. Lee, H. G. et al. Pathogenic function of bystander-activated memory-like CD4+ T cells in autoimmune encephalomyelitis. Nat. Commun. 10, 709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Judge, A. D., Zhang, X., Fujii, H., Surh, C. D. & Sprent, J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8+ T cells. J. Exp. Med. 196, 935–946 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lu, J. et al. Interleukin 15 promotes antigen-independent in vitro expansion and long-term survival of antitumor cytotoxic T lymphocytes. Clin. Cancer Res. 8, 3877–3884 (2002).

    CAS  PubMed  Google Scholar 

  125. Nakamura, R. et al. Interleukin-15 is critical in the pathogenesis of influenza a virus-induced acute lung injury. J. Virol. 84, 5574–5582 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Belkaya, S. et al. Inherited IL-18BP deficiency in human fulminant viral hepatitis. J. Exp. Med. 216, 1777–1790 (2019). This study reports immunopathological liver injury during acute HAV infection due to uncontrolled activity of IL-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Duhen, T. et al. Co-expression of CD39 and CD103 identifies tumor-reactive CD8 T cells in human solid tumors. Nat. Commun. 9, 2724 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

    Article  CAS  PubMed  Google Scholar 

  129. Tietze, J. K. et al. Delineation of antigen-specific and antigen-nonspecific CD8+ memory T-cell responses after cytokine-based cancer immunotherapy. Blood 119, 3073–3083 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wong, H. C., Jeng, E. K. & Rhode, P. R. The IL-15-based superagonist ALT-803 promotes the antigen-independent conversion of memory CD8+ T cells into innate-like effector cells with antitumor activity. Oncoimmunology 2, e26442 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Erkes, D. A. et al. Virus-specific CD8+ T cells infiltrate melanoma lesions and retain function independently of PD-1 expression. J. Immunol. 198, 2979–2988 (2017).

    Article  CAS  PubMed  Google Scholar 

  132. Danahy, D. B., Berton, R. R. & Badovinac, V. P. Cutting edge: antitumor immunity by pathogen-specific CD8 T cells in the absence of cognate antigen recognition. J. Immunol. 204, 1431–1435 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Rosato, P. C. et al. Virus-specific memory T cells populate tumors and can be repurposed for tumor immunotherapy. Nat. Commun. 10, 567 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Newman, J. H. et al. Intratumoral injection of the seasonal flu shot converts immunologically cold tumors to hot and serves as an immunotherapy for cancer. Proc. Natl Acad. Sci. USA 117, 1119–1128 (2020).

    Article  CAS  PubMed  Google Scholar 

  135. Reese, T. A. et al. Sequential infection with common pathogens promotes human-like immune gene expression and altered vaccine response. Cell Host Microbe 19, 713–719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. E. Oh (KAIST) for critical discussion. This work was supported by the Samsung Science and Technology Foundation under project number SSTF-BA1402-51.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eui-Cheol Shin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Immunology thanks Antonio Bertoletti and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Zoltan Fehervari was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Jeong, S. & Shin, EC. Significance of bystander T cell activation in microbial infection. Nat Immunol 23, 13–22 (2022). https://doi.org/10.1038/s41590-021-00985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-021-00985-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing