Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

East-to-west human dispersal into Europe 1.4 million years ago

Abstract

Stone tools stratified in alluvium and loess at Korolevo, western Ukraine, have been studied by several research groups1,2,3 since the discovery of the site in the 1970s. Although Korolevo’s importance to the European Palaeolithic is widely acknowledged, age constraints on the lowermost lithic artefacts have yet to be determined conclusively. Here, using two methods of burial dating with cosmogenic nuclides4,5, we report ages of 1.42 ± 0.10 million years and 1.42 ± 0.28 million years for the sedimentary unit that contains Mode-1-type lithic artefacts. Korolevo represents, to our knowledge, the earliest securely dated hominin presence in Europe, and bridges the spatial and temporal gap between the Caucasus (around 1.85–1.78 million years ago)6 and southwestern Europe (around 1.2–1.1 million years ago)7,8. Our findings advance the hypothesis that Europe was colonized from the east, and our analysis of habitat suitability9 suggests that early hominins exploited warm interglacial periods to disperse into higher latitudes and relatively continental sites—such as Korolevo—well before the Middle Pleistocene Transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: First peopling of Europe.
Fig. 2: Composite stratigraphic section at Korolevo I.
Fig. 3: Selected lithic artefacts from Korolevo I, level VII.
Fig. 4: Cosmogenic nuclide burial ages for Korolevo I, level VII.

Similar content being viewed by others

Data availability

All cosmogenic nuclide data used in this study are provided in Supplementary Table 3. Parameters used in our P-PINI model runs are given in Supplementary Tables 58. Parameters used in isochron burial dating are provided in Supplementary Table 4. The calculated hominin habitat suitability data are available on the climate data server at https://climatedata.ibs.re.kr linked to a previous study9.

Code availability

The MATLAB code used to generate burial ages with P-PINI (as shown in Fig. 4 and Supplementary Figs. 7–11) is shared at https://github.com/CosmoAarhus/Korolevo.

References

  1. Gladilin, V. N. The Korolevo Palaeolithic site: research methods, stratigraphy. Anthropologie 27, 93–103 (1989).

    Google Scholar 

  2. Adamenko, O. M. & Gladilin, V. N. Korolevo un des plus anciens habitats acheuléens et moustériens de Transcarpatie soviétique. L’Anthropologie 93, 689–712 (1989).

    Google Scholar 

  3. Koulakovska, L. V., Usik, V. & Haesaerts, P. Early Paleolithic of Korolevo site (Transcarpathia, Ukraine). Quat. Int. 223–224, 116–130 (2010).

    Article  Google Scholar 

  4. Balco, G. & Rovey, C. W. An isochron method for cosmogenic nuclide dating of buried soils and sediments. Am. J. Sci. 308, 1083–1114 (2008).

    Article  ADS  Google Scholar 

  5. Knudsen, M. F. et al. New cosmogenic nuclide burial-dating model indicates onset of major glaciations in the Alps during Middle Pleistocene Transition. Earth Planet. Sci. Lett. 549, 116491 (2020).

    Article  CAS  Google Scholar 

  6. Ferring, R. et al. Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma. Proc. Natl Acad. Sci. USA 108, 10432–10436 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carbonell, E. et al. The first hominin of Europe. Nature 452, 465–469 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Michel, V. et al. New dating evidence of the early presence of hominins in Southern Europe. Sci. Rep. 7, 10074 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Timmermann, A. et al. Climate effects on archaic human habitats and species successions. Nature 604, 495–501 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parés, J. M., Duval, M. & Arnold, L. J. New views on an old move: hominin migration into Eurasia. Quat. Int. 295, 5–12 (2013).

    Article  Google Scholar 

  11. Muttoni, G., Scardia, G. & Kent, D. V. Early hominins in Europe: the Galerian migration hypothesis. Quat. Sci. Rev. 180, 1–29 (2018).

    Article  ADS  Google Scholar 

  12. Falguères, C. The first human settlements out Africa into Europe: a chronological perspective. Quat. Sci. Rev. 247, 106551 (2020).

    Article  Google Scholar 

  13. Channell, J. E. T., Singer, B. S. & Jicha, B. R. Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives. Quat. Sci. Rev. 228, 106114 (2020).

    Article  Google Scholar 

  14. Muttoni, G., Scardia, G., Kent, D. V. & Martin, R. A. Bottleneck at Jaramillo for human migration to Iberia and the rest of Europe? J. Hum. Evol. 80, 187–190 (2015).

    Article  PubMed  Google Scholar 

  15. Gabunia, L. et al. Earliest Pleistocene hominid cranial remains from Dmanisi, republic of Georgia: taxonomy, geological setting, and age. Science 288, 1019–1025 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Garcia, T. et al. Earliest human remains in Eurasia: new 40Ar/39Ar dating of the Dmanisi hominid-bearing levels, Georgia. Quat. Geochronol. 5, 443–451 (2010).

    Article  Google Scholar 

  17. Scardia, G. et al. Chronologic constraints on hominin dispersal outside Africa since 2.48 Ma from the Zarqa Valley, Jordan. Quat. Sci. Rev. 219, 1–19 (2019).

    Article  ADS  Google Scholar 

  18. Lebatard, A. E. et al. Dating the Homo erectus bearing travertine from Kocabas (Denizli, Turkey) at at least 1.1 Ma. Earth Planet. Sci. Lett. 390, 8–18 (2014).

    Article  ADS  CAS  Google Scholar 

  19. Adamenko, O. M. et al. Paleolithic site of Korolevo in Transcarpathia. Bull. Commiss. Invest. Quat. Period 58, 5–25 (1989). (in Russian).

    Google Scholar 

  20. Usyk, V. I., Gerasimenko, N., Garba, R., Damblon, F. & Nigst, P. R. Exploring the potential of the Middle and Upper Palaeolithic Site Korolevo II (Ukraine): new results on stratigraphy, chronology and archaeological sequence. J. Paleo. Arch. 6, 16 (2023).

    Article  Google Scholar 

  21. Haesaerts, P. & Koulakovska, L. in The European Middle Palaeolithic (ed. Koulakovaska, L.) 21–37 (Institute of Archaeology, National Academy of Sciences, Ukraine, 2006).

  22. Nawrocki, J., Lanczont, M., Rosowiecka, O. & Bogucki, A. Magnetostratigraphy of the loess–palaeosol key Palaeolithic section at Korolevo (Transcarpathia, W Ukraine). Quat. Int. 399, 72–85 (2016).

    Article  Google Scholar 

  23. Adamenko, O. et al. Reference magnetostratigraphic sections of anthropogenic deposits of Transcarpathia [in Russian]. Proceedings of the Academy of Sciences of the USSR. Geological Series 11, 55–73 (1981). 

    Google Scholar 

  24. Rocca, R. First settlements in Central Europe: between originality and banality. Quat. Int. 409, 213–221 (2016).

    Article  Google Scholar 

  25. Szymanek, M. & Julien, M. A. Early and Middle Pleistocene climate-environment conditions in Central Europe and the hominin settlement record. Quat. Sci. Rev. 198, 56–75 (2018).

    Article  ADS  Google Scholar 

  26. Rácz, B., Szakmány, G. & Biró, K. T. Contribution to the cognizance of raw materials and raw material regions of the Transcarpathian Palaeolithic. Acta Arch. Acad. Sci. Hungaricae 67, 209–229 (2016).

    Google Scholar 

  27. Kameník, J. et al. Processing of Korolevo samples aimed at AMS determination of in situ 10Be and 26Al nuclides and their purity control using follow-up mass spectrometry scans. J. Radioanal. Nucl. Chem. 332, 1583–1590 (2023).

    Article  Google Scholar 

  28. Nørgaard, J., Jansen, J. D., Neuhuber, S., Ruszkiczay-Rüdiger, Z. & Knudsen, M. F. P–PINI: a cosmogenic nuclide burial dating method for landscapes undergoing non-steady erosion. Quat. Geochronol. 74, 101420 (2023).

    Article  Google Scholar 

  29. Granger, D. E. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.) 81–97 (Elsevier, 2014).

  30. Granger, D., Gibbon, R. & Kuman, K. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan. Nature 522, 85–88 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Lisiecki, L. E. & Raymo, M. E. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    ADS  Google Scholar 

  32. Leakey, M. D. Olduvai Gorge: Excavations in Beds I & II 1960–1963 Vol. 3 (Cambridge Univ. Press, 1971).

  33. Mgeladze, A. et al. Hominin occupations at the Dmanisi site, Georgia, Southern Caucasus: raw materials and technical behaviours of Europe’s first hominins. J. Hum. Evol. 60, 571–596 (2011).

    Article  PubMed  Google Scholar 

  34. Toro-Moyano, I. et al. The oldest human fossil in Europe, from Orce (Spain). J. Hum. Evol. 65, 1–9 (2013).

    Article  PubMed  Google Scholar 

  35. Arzarello, M. et al. L’industrie lithique du site Pleistocene inferieur de Pirro Nord (Apricena, Italie du sud): une occupation humaine entre 1.3 et 1.7 Ma. Anthropologie 113, 47–58 (2009). 

    Article  Google Scholar 

  36. Arzarello, M., De Weyer, L. & Peretto, C. The first European peopling and the Italian case: peculiarities and “opportunism”. Quat. Int. 393, 41–50 (2016).

    Article  Google Scholar 

  37. Chu, W. The Danube corridor hypothesis and the Carpathian Basin: geological, environmental and archaeological approaches to characterizing Aurignacian dynamics. J. World Prehist. 31, 117–178 (2018).

    Article  Google Scholar 

  38. Mellars, P. The earliest modern humans in Europe. Nature 479, 483–485 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Sirakov, N. et al. An ancient continuous human presence in the Balkans and the beginnings of human settlements in western Eurasia: a lower Pleistocene example of the Lower Palaeolithic levels in Kozarnika cave (North-western Bulgaria). Quat. Int. 223–224, 94–106 (2010).

    Article  Google Scholar 

  40. Amirkhanov, H. A., Ozherelyev, D. V., Sablin, M. V. & Agadzhanyan, A. K. Faunal remains from the Oldowan site of Muhkai II in the North Caucasus: potential for dating and paleolandscape reconstruction. Quat. Int. 395, 233–241 (2016).

    Article  Google Scholar 

  41. Shchenlinsky, V. E. et al. The Early Pleistocene site of Kermek in western Ciscaucasia (southern Russia): stratigraphy, biotic record and lithic industry (preliminary results). Quat. Int. 393, 51–69 (2016).

    Article  Google Scholar 

  42. Alvarez, C. et al. New magnetostratigraphic and numerical age of the Fuente Nueva-3 site (Guadix-Baza basin, Spain). Quat. Int. 389, 224–234 (2015).

    Article  Google Scholar 

  43. Bourguignon, L. et al. Bois-de-Riquet (Lézignan-la-Cèbe, Hérault): a late Early Pleistocene archaeological occurrence in southern France. Quat. Int. 393, 24–40 (2016).

    Article  Google Scholar 

  44. Antón, S. C. Natural history of Homo erectus. Am. J. Phys. Anthropol. 37, 126–170 (2003).

    Article  Google Scholar 

  45. Batchelor, C. L. et al. The configuration of Northern Hemisphere ice sheets through the Quaternary. Nat. Commun. 10, 3713 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  46. Chmeleff, J., von Blanckenburg, F., Kossert, K. & Jakob, D. Determination of the 10Be half-life by multicollector ICP–MS and liquid scintillation counting. Nucl. Instr. Methods B 268, 192–199 (2010).

    Article  ADS  CAS  Google Scholar 

  47. Korschinek, G. et al. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl. Instr. Methods B 268, 187–191 (2010).

    Article  ADS  CAS  Google Scholar 

  48. Nishiizumi, K. Preparation of 26Al AMS standards. Nucl. Instr. Methods B 223–224, 388–392 (2004).

    Article  ADS  Google Scholar 

  49. Akhmadaliev, S., Heller, R., Hanf, D., Rugel, G. & Merchel, S. The new 6MV AMS-facility DREAMS at Dresden. Nucl. Instr. Methods B 294, 5–10 (2013).

    Article  ADS  CAS  Google Scholar 

  50. Rugel, G. et al. The first four years of the AMS-facility DREAMS: status and developments for more accurate radionuclide data. Nucl. Instr. Methods B 370, 94–100 (2016).

    Article  ADS  CAS  Google Scholar 

  51. Gosse, J. C. & Phillips, F. M. Terrestrial in situ cosmogenic nuclides: theory and application. Quat. Sci. Rev. 20, 1475–1560 (2001).

    Article  ADS  Google Scholar 

  52. Granger, D. E. & Muzikar, P. F. Dating sediment burial with in situ-produced cosmogenic nuclides: theory, techniques, and limitations. Earth Planet. Sci. Lett. 188, 269–281 (2001).

    Article  ADS  CAS  Google Scholar 

  53. Erlanger, E., Granger, D. E. & Gibbon, R. J. Rock uplift rates in South Africa from isochron burial dating of fluvial and marine terraces. Geology 40, 1019–1022 (2012).

    Article  ADS  Google Scholar 

  54. Stone, J. O. Air pressure and cosmogenic isotope production. J. Geophys. Res. 105, 23753–23759 (2000).

    Article  ADS  CAS  Google Scholar 

  55. Balco, G. Production rate calculations for cosmic-ray-muon-produced 10Be and 26Al benchmarked against geological calibration data. Quat. Geochronol. 39, 150–173 (2017).

    Article  ADS  Google Scholar 

  56. Merchel, S. & Herpers, U. An update on radiochemical separation techniques for the determination of long-lived radionuclides via accelerator mass spectrometry. Radiochim. Acta 84, 215–220 (1999).

    Article  CAS  Google Scholar 

  57. Merchel, S. et al. Towards more precise 10Be and 36Cl data from measurements at the 10−14 level: influence of sample preparation. Nucl. Instr. Methods B 266, 4921–4926 (2008).

    Article  ADS  CAS  Google Scholar 

  58. Merchel, S. et al. Attempts to understand potential deficiencies in chemical procedures for AMS: cleaning and dissolving quartz for 10Be and 26Al analysis. Nucl. Instr. Methods B 455, 293–299 (2019).

    Article  ADS  CAS  Google Scholar 

  59. Lachner, J. et al. Optimization of 10Be measurements at the 6 MV AMS facility DREAMS. Nucl. Instr. Methods B 535, 29–33 (2023).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the DREAMS team at the Ion Beam Centre at the Helmholtz-Zentrum Dresden-Rossendorf for assistance with accelerator mass spectrometry; D. Granger and W. Odom for providing the MATLAB code describing the isochron model; and T. Fujioka for discussions about the Atapuerca sites. We acknowledge the following funding: Czech Ministry of Education, Youth and Sports (MEYS) (CZ.02.1.01/0.0/0.0/16_019/0000728); RADIATE (Horizon 2020, 824096) transnational access (21002366-ST); RADIATE guest researcher programme; MEYS (LM2018120); Czech Science Foundation (22-13190S); and Charles University Grant Agency (310222).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: R.G., V.U. and J.D.J. Methodology: J.D.J., K.S., J. Kamenik, R.G., M.F.K., J.L., G.R., J. Kučera and F.V. Investigation: R.G., J. Kamenik, K.S., F.V., V.U., L.Y.-M., G.R., J.L., J.D.J. and M.F.K. Funding acquisition: R.G., J. Kamenik and J Kučera. Project administration: R.G. Supervision: J.D.J. and J. Kučera. Writing (original draft): R.G., J.D.J., M.F.K., V.U., N.G. and A.I.R.H. Writing (review and editing): J.D.J., M.F.K., R.G., N.G., A.I.R.H., V.U., J. Kamenik, J. Kučera, K.S., J.L., G.R. and F.V.

Corresponding authors

Correspondence to R. Garba, M. F. Knudsen or J. D. Jansen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Darryl Granger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, which include background on the archaeology of Korolevo, chronometry, Supplementary References and computer code availability details.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garba, R., Usyk, V., Ylä-Mella, L. et al. East-to-west human dispersal into Europe 1.4 million years ago. Nature 627, 805–810 (2024). https://doi.org/10.1038/s41586-024-07151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07151-3

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing