Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biochemical and mechanical regulation of actin dynamics

Abstract

Polymerization of actin filaments against membranes produces force for numerous cellular processes, such as migration, morphogenesis, endocytosis, phagocytosis and organelle dynamics. Consequently, aberrant actin cytoskeleton dynamics are linked to various diseases, including cancer, as well as immunological and neurological disorders. Understanding how actin filaments generate forces in cells, how force production is regulated by the interplay between actin-binding proteins and how the actin-regulatory machinery responds to mechanical load are at the heart of many cellular, developmental and pathological processes. During the past few years, our understanding of the mechanisms controlling actin filament assembly and disassembly has evolved substantially. It has also become evident that the activities of key actin-binding proteins are not regulated solely by biochemical signalling pathways, as mechanical regulation is critical for these proteins. Indeed, the architecture and dynamics of the actin cytoskeleton are directly tuned by mechanical load. Here we discuss the general mechanisms by which key actin regulators, often in synergy with each other, control actin filament assembly, disassembly, and monomer recycling. By using an updated view of actin dynamics as a framework, we discuss how the mechanics and geometry of actin networks control actin-binding proteins, and how this translates into force production in endocytosis and mesenchymal cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of actin dynamics.
Fig. 2: Nucleation and assembly of branched and linear filament structures.
Fig. 3: Interplay between actin filament nucleation and assembly pathways.
Fig. 4: Interplay between actin-binding proteins in filament network disassembly.
Fig. 5: Applying a mechanical load to actin networks affects actin dynamics in many ways.
Fig. 6: Mechanics of Arp2/3-nucleated actin filament networks in cell migration and endocytosis.
Fig. 7: Molecular explanation for branched network mechano-adaptation.

Similar content being viewed by others

References

  1. Gunning, P. W., Ghoshdastider, U., Whitaker, S., Popp, D. & Robinson, R. C. The evolution of compositionally and functionally distinct actin filaments. J. Cell Sci. 128, 2009–2019 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Akıl, C. et al. Mythical origins of the actin cytoskeleton. Curr. Opin. Cell Biol. 68, 55–63 (2021).

    Article  PubMed  Google Scholar 

  3. Pollard, T. D. Actin and actin-binding proteins. Cold Spring Harb. Perspect. Biol. 8, a018226 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Oda, T., Iwasa, M., Aihara, T., Maéda, Y. & Narita, A. The nature of the globular- to fibrous-actin transition. Nature 457, 441–445 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Merino, F. et al. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM. Nat. Struct. Mol. Biol. 25, 528–537 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Chou, S. Z. & Pollard, T. D. Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides. Proc. Natl Acad. Sci. USA 116, 4265–4274 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pollard, T. D. & Cooper, J. A. Actin, a central player in cell shape and movement. Science 326, 1208–1212 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blanchoin, L., Boujemaa-Paterski, R., Sykes, C. & Plastino, J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 94, 235–263 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Livne, A. & Geiger, B. The inner workings of stress fibers − from contractile machinery to focal adhesions and back. J. Cell Sci. 129, 1293–1304 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Anderson, C. A., Kovar, D. R., Gardel, M. L. & Winkelman, J. D. LIM domain proteins in cell mechanobiology. Cytoskeleton 78, 303–311 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Mogilner, A. & Oster, G. Polymer motors: pushing out the front and pulling up the back. Curr. Biol. 13, R721–R733 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Kaksonen, M., Sun, Y. & Drubin, D. G. A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Lacy, M. M., Baddeley, D. & Berro, J. Single-molecule turnover dynamics of actin and membrane coat proteins in clathrin-mediated endocytosis. Elife 8, e52355 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lai, F. P. et al. Arp2/3 complex interactions and actin network turnover in lamellipodia. EMBO J. 27, 982–992 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sept, D. & McCammon, J. A. Thermodynamics and kinetics of actin filament nucleation. Biophys. J. 81, 667–674 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Funk, J. et al. Profilin and formin constitute a pacemaker system for robust actin filament growth. Elife 8, e50963 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xue, B. & Robinson, R. C. Guardians of the actin monomer. Eur. J. Cell Biol. 92, 316–332 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Koestler, S. A. et al. F- and G-actin concentrations in lamellipodia of moving cells. PLoS ONE 4, e4810 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boujemaa-Paterski, R. et al. Network heterogeneity regulates steering in actin-based motility. Nat. Commun. 8, 655 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Malik-Garbi, M. et al. Scaling behaviour in steady-state contracting actomyosin networks. Nat. Phys. 15, 509–516 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rodriguez, A. J., Shenoy, S. M., Singer, R. H. & Condeelis, J. Visualization of mRNA translation in living cells. J. Cell Biol. 175, 67–76 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Safer, D., Golla, R. & Nachmias, V. T. Isolation of a 5-kilodalton actin-sequestering peptide from human blood platelets. Proc. Natl Acad. Sci. USA 87, 2536–2540 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pollard, T. D. & Cooper, J. A. Quantitative analysis of the effect of Acanthamoeba profilin on actin filament nucleation and elongation. Biochemistry 23, 6631–6641 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. Gautreau, A. M., Fregoso, F. E., Simanov, G. & Dominguez, R. Nucleation, stabilization, and disassembly of branched actin networks. Trends Cell Biol. 32, 421–432 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bieling, P. et al. WH2 and proline-rich domains of WASP-family proteins collaborate to accelerate actin filament elongation. EMBO J. 37, 102–121 (2018). This article describes how polyproline sequences of WASP family proteins support filament elongation by bringing assembly-competent profilin–actin complexes to filament barbed ends, and also by transferring actin monomers to the nearby WH2 domains of the NPFs. Also, unoccupied WH2 domains potently tether actin network to membranes.

    Article  CAS  PubMed  Google Scholar 

  27. Padrick, S. B., Doolittle, L. K., Brautigam, C. A., King, D. S. & Rosen, M. K. Arp2/3 complex is bound and activated by two WASP proteins. Proc. Natl Acad. Sci. USA 108, E472–E479 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ti, S.-C., Jurgenson, C. T., Nolen, B. J. & Pollard, T. D. Structural and biochemical characterization of two binding sites for nucleation-promoting factor WASp-VCA on Arp2/3 complex. Proc. Natl Acad. Sci. USA 108, E463–E471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zimmet, A. et al. Cryo-EM structure of NPF-bound human Arp2/3 complex and activation mechanism. Sci. Adv. 6, eaaz7651 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaaban, M., Chowdhury, S. & Nolen, B. J. Cryo-EM reveals the transition of Arp2/3 complex from inactive to nucleation-competent state. Nat. Struct. Mol. Biol. 27, 1009–1016 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Blanchoin, L. et al. Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins. Nature 404, 1007–1011 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, B. A. et al. Three-color single molecule imaging shows WASP detachment from Arp2/3 complex triggers actin filament branch formation. Elife 2, e01008 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Svitkina, T. M. & Borisy, G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009–1026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mullins, R. D., Heuser, J. A. & Pollard, T. D. The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc. Natl Acad. Sci. USA 95, 6181–6186 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kovar, D. R. & Pollard, T. D. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc. Natl Acad. Sci. USA 101, 14725–14730 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Romero, S. et al. Formin is a processive motor that requires profilin to accelerate actin assembly and associated ATP hydrolysis. Cell 119, 419–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Courtemanche, N. Mechanisms of formin-mediated actin assembly and dynamics. Biophys. Rev. 10, 1553–1569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Watanabe, N., Kato, T., Fujita, A., Ishizaki, T. & Narumiya, S. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1, 136–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Ramalingam, N. et al. Phospholipids regulate localization and activity of mDia1 formin. Eur. J. Cell Biol. 89, 723–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Gorelik, R., Yang, C., Kameswaran, V., Dominguez, R. & Svitkina, T. Mechanisms of plasma membrane targeting of formin mDia2 through its amino terminal domains. Mol. Biol. Cell 22, 189–201 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pring, M., Evangelista, M., Boone, C., Yang, C. & Zigmond, S. H. Mechanism of formin-induced nucleation of actin filaments. Biochemistry 42, 486–496 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Baker, J. L. et al. Electrostatic interactions between the Bni1p formin FH2 domain and actin influence actin filament nucleation. Structure 23, 68–79 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Gould, C. J. et al. The formin DAD domain plays dual roles in autoinhibition and actin nucleation. Curr. Biol. 21, 384–390 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thompson, M. E., Heimsath, E. G., Gauvin, T. J., Higgs, H. N. & Kull, F. J. FMNL3 FH2–actin structure gives insight into formin-mediated actin nucleation and elongation. Nat. Struct. Mol. Biol. 20, 111–118 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Moseley, J. B. et al. A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol. Biol. Cell 15, 896–907 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xie, Y. et al. Polarisome scaffolder Spa2-mediated macromolecular condensation of Aip5 for actin polymerization. Nat. Commun. 10, 5078 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Okada, K. et al. Adenomatous polyposis coli protein nucleates actin assembly and synergizes with the formin mDia1. J. Cell Biol. 189, 1087–1096 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Quinlan, M. E., Hilgert, S., Bedrossian, A., Mullins, R. D. & Kerkhoff, E. Regulatory interactions between two actin nucleators, Spire and Cappuccino. J. Cell Biol. 179, 117–128 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Faix, J. & Rottner, K. Ena/VASP proteins in cell edge protrusion, migration and adhesion. J. Cell Sci. 135, jcs259226 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Disanza, A. et al. CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J. 32, 2735–2750 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Breitsprecher, D. et al. Molecular mechanism of Ena/VASP-mediated actin-filament elongation. EMBO J. 30, 456–467 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ferron, F., Rebowski, G., Lee, S. H. & Dominguez, R. Structural basis for the recruitment of profilin–actin complexes during filament elongation by Ena/VASP. EMBO J. 26, 4597–4606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bear, J. E. et al. Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109, 509–521 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Hansen, S. D. & Mullins, R. D. VASP is a processive actin polymerase that requires monomeric actin for barbed end association. J. Cell Biol. 191, 571–584 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Winkelman, J. D., Bilancia, C. G., Peifer, M. & Kovar, D. R. Ena/VASP Enabled is a highly processive actin polymerase tailored to self-assemble parallel-bundled F-actin networks with fascin. Proc. Natl Acad. Sci. USA 111, 4121–4126 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Breitsprecher, D. et al. Clustering of VASP actively drives processive, WH2 domain-mediated actin filament elongation. EMBO J. 27, 2943–2954 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Barzik, M. et al. Ena/VASP proteins enhance actin polymerization in the presence of barbed end capping proteins. J. Biol. Chem. 280, 28653–28662 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Kage, F. et al. FMNL formins boost lamellipodial force generation. Nat. Commun. 8, 14832 (2017). This study reveals that, in addition to the Arp2/3 complex, also actin polymerization catalysed by formins is important for the proper architecture and function of lamellipodial actin filament networks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Damiano-Guercio, J. et al. Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. Elife 9, e55351 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Svitkina, T. M. et al. Mechanism of filopodia initiation by reorganization of a dendritic network. J. Cell Biol. 160, 409–421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnson, H. E. et al. F-actin bundles direct the initiation and orientation of lamellipodia through adhesion-based signaling. J. Cell Biol. 208, 443–455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Achard, V. et al. A “primer”-based mechanism underlies branched actin filament network formation and motility. Curr. Biol. 20, 423–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Raz-Ben Aroush, D. et al. Actin turnover in lamellipodial fragments. Curr. Biol. 27, 2963–2973.e14 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Smith, M. B., Kiuchi, T., Watanabe, N. & Vavylonis, D. Distributed actin turnover in the lamellipodium and FRAP kinetics. Biophys. J. 104, 247–257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vitriol, E. A. et al. Two functionally distinct sources of actin monomers supply the leading edge of lamellipodia. Cell Rep. 11, 433–445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen, Q. & Pollard, T. D. Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches. Curr. Biol. 23, 1154–1162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wioland, H. et al. ADF/Cofilin accelerates actin dynamics by severing filaments and promoting their depolymerization at both ends. Curr. Biol. 27, 1956–1967.e7 (2017). This article reveals that ADF/cofilin-saturated filament barbed ends are very difficult to cap, and that they depolymerize even in the presence of actin monomers. All reactions underpinning filament severing and depolymerization from both ends are quantified for the three mammalian isoforms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Blanchoin, L., Pollard, T. D. & Mullins, R. D. Interactions of ADF/cofilin, Arp2/3 complex, capping protein and profilin in remodeling of branched actin filament networks. Curr. Biol. 10, 1273–1282 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Chan, C., Beltzner, C. C. & Pollard, T. D. Cofilin dissociates Arp2/3 complex and branches from actin filaments. Curr. Biol. 19, 537–545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Schroer, T. A. Dynactin. Annu. Rev. Cell Dev. Biol. 20, 759–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  71. Urnavicius, L. et al. The structure of the dynactin complex and its interaction with dynein. Science 347, 1441–1446 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fokin, A. I. et al. The Arp1/11 minifilament of dynactin primes the endosomal Arp2/3 complex. Sci. Adv. 7, eabd5956 (2021). This article shows that, at the surface of endosomes, the WASH complex interacts with dynactin and uncaps the Arp1/11 minifilament to prime the WASH-dependent, endosomal Arp2/3 branched actin network.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wagner, A. R., Luan, Q., Liu, S.-L. & Nolen, B. J. Dip1 defines a class of Arp2/3 complex activators that function without preformed actin filaments. Curr. Biol. 23, 1990–1998 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cao, L. et al. SPIN90 associates with mDia1 and the Arp2/3 complex to regulate cortical actin organization. Nat. Cell Biol. 22, 803–814 (2020). This article investigates how SPIN90 favours a Dia1-generated cortex in cells, and reveals the formation of a SPIN90–Arp2/3–Dia1 complex that enhances filament nucleation in vitro, yielding rapid elongation of filaments with Dia1 at barbed ends and SPIN90–Arp2/3 at the pointed ends.

    Article  CAS  PubMed  Google Scholar 

  75. Balzer, C. J., Wagner, A. R., Helgeson, L. A. & Nolen, B. J. Single-turnover activation of Arp2/3 complex by Dip1 may balance nucleation of linear versus branched actin filaments. Curr. Biol. 29, 3331–3338.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Balzer, C. J. et al. Synergy between Wsp1 and Dip1 may initiate assembly of endocytic actin networks. Elife 9, e60419 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Hansen, S. D. & Mullins, R. D. Lamellipodin promotes actin assembly by clustering Ena/VASP proteins and tethering them to actin filaments. Elife 4, e06585 (2015).

    Article  PubMed Central  Google Scholar 

  78. Dimchev, G. et al. Lamellipodin tunes cell migration by stabilizing protrusions and promoting adhesion formation. J. Cell Sci. 133, jcs239020 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cheng, K. W. & Mullins, R. D. Initiation and disassembly of filopodia tip complexes containing VASP and lamellipodin. Mol. Biol. Cell 31, 2021–2034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zigmond, S. H. et al. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr. Biol. 13, 1820–1823 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Shekhar, S. et al. Formin and capping protein together embrace the actin filament in a ménage à trois. Nat. Commun. 6, 8730 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Bombardier, J. P. et al. Single-molecule visualization of a formin-capping protein ‘decision complex’ at the actin filament barbed end. Nat. Commun. 6, 8707 (2015).

    Article  CAS  PubMed  Google Scholar 

  83. Harker, A. J. et al. Ena/VASP processive elongation is modulated by avidity on actin filaments bundled by the filopodia cross-linker fascin. Mol. Biol. Cell 30, 851–862 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Funk, J. et al. A barbed end interference mechanism reveals how capping protein promotes nucleation in branched actin networks. Nat. Commun. 12, 5329 (2021). This article deciphers that CP potentiates the nucleation of actin filaments by the Arp2/3 complex by preventing the association of Arp2/3 NPFs with filament barbed ends, thus favouring NPF loading with actin monomers required to activate the Arp2/3 complex for branched network assembly.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wiesner, S. et al. A biomimetic motility assay provides insight into the mechanism of actin-based motility. J. Cell Biol. 160, 387–398 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Loisel, T. P., Boujemaa, R., Pantaloni, D. & Carlier, M.-F. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401, 613–616 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Pollard, T. D., Blanchoin, L. & Mullins, R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu. Rev. Biophys. Biomol. Struct. 29, 545–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Bamburg, J. R., Harris, H. E. & Weeds, A. G. Partial purification and characterization of an actin depolymerizing factor from brain. FEBS Lett. 121, 178–182 (1980).

    Article  CAS  PubMed  Google Scholar 

  89. Lappalainen, P. & Drubin, D. G. Cofilin promotes rapid actin filament turnover in vivo. Nature 388, 78–82 (1997).

    Article  CAS  PubMed  Google Scholar 

  90. Andrianantoandro, E. & Pollard, T. D. Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol. Cell 24, 13–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. McGough, A., Pope, B., Chiu, W. & Weeds, A. Cofilin changes the twist of f-actin: implications for actin filament dynamics and cellular function. J. Cell Biol. 138, 771–781 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Suarez, C. et al. Cofilin tunes the nucleotide state of actin filaments and severs at bare and decorated segment boundaries. Curr. Biol. 21, 862–868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanaka, K. et al. Structural basis for cofilin binding and actin filament disassembly. Nat. Commun. 9, 1860 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Huehn, A. R. et al. Structures of cofilin-induced structural changes reveal local and asymmetric perturbations of actin filaments. Proc. Natl Acad. Sci. USA 117, 1478–1484 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Carlier, M.-F. et al. Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J. Cell Biol. 136, 1307–1322 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Shekhar, S. & Carlier, M.-F. Enhanced depolymerization of actin filaments by ADF/cofilin and monomer funneling by capping protein cooperate to accelerate barbed-end growth. Curr. Biol. 27, 1990–1998.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wioland, H., Jegou, A. & Romet-Lemonne, G. Quantitative variations with pH of actin depolymerizing factor/Cofilin’s multiple actions on actin filaments. Biochemistry 58, 40–47 (2019).

    Article  CAS  PubMed  Google Scholar 

  98. Balcer, H. I. et al. Coordinated regulation of actin filament turnover by a high-molecular-weight Srv2/CAP complex, cofilin, profilin, and Aip1. Curr. Biol. 13, 2159–2169 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Baum, B., Li, W. & Perrimon, N. A cyclase-associated protein regulates actin and cell polarity during Drosophila oogenesis and in yeast. Curr. Biol. 10, 964–973 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Bertling, E. et al. Cyclase-associated protein 1 (CAP1) promotes cofilin-induced actin dynamics in mammalian nonmuscle cells. Mol. Biol. Cell 15, 2324–2334 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Moriyama, K. & Yahara, I. Human CAP1 is a key factor in the recycling of cofilin and actin for rapid actin turnover. J. Cell Sci. 115, 1591–1601 (2002).

    Article  CAS  PubMed  Google Scholar 

  102. Gressin, L., Guillotin, A., Guérin, C., Blanchoin, L. & Michelot, A. Architecture dependence of actin filament network disassembly. Curr. Biol. 25, 1437–1447 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Kotila, T. et al. Mechanism of synergistic actin filament pointed end depolymerization by cyclase-associated protein and cofilin. Nat. Commun. 10, 5320 (2019). This study demonstrates that CAP catalyses pointed end depolymerization of cofilin–actin filaments, and reveals the underlying structural mechanism.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Shekhar, S., Chung, J., Kondev, J., Gelles, J. & Goode, B. L. Synergy between cyclase-associated protein and cofilin accelerates actin filament depolymerization by two orders of magnitude. Nat. Commun. 10, 5319 (2019). This study reveals that actin filament pointed end depolymerization is accelerated by CAP.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kotila, T. et al. Structural basis of actin monomer re-charging by cyclase-associated protein. Nat. Commun. 9, 1892 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Freeman, N. L., Chen, Z., Horenstein, J., Weber, A. & Field, J. An actin monomer binding activity localizes to the carboxyl-terminal half of the Saccharomyces cerevisiae cyclase-associated protein. J. Biol. Chem. 270, 5680–5685 (1995).

    Article  CAS  PubMed  Google Scholar 

  107. Brieher, W. M., Kueh, H. Y., Ballif, B. A. & Mitchison, T. J. Rapid actin monomer–insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, and Aip1. J. Cell Biol. 175, 315–324 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kueh, H. Y., Charras, G. T., Mitchison, T. J. & Brieher, W. M. Actin disassembly by cofilin, coronin, and Aip1 occurs in bursts and is inhibited by barbed-end cappers. J. Cell Biol. 182, 341–353 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jansen, S. et al. Single-molecule imaging of a three-component ordered actin disassembly mechanism. Nat. Commun. 6, 7202 (2015).

    Article  PubMed  Google Scholar 

  110. Chen, Q., Courtemanche, N. & Pollard, T. D. Aip1 promotes actin filament severing by cofilin and regulates constriction of the cytokinetic contractile ring. J. Biol. Chem. 290, 2289–2300 (2015).

    Article  CAS  PubMed  Google Scholar 

  111. Rodal, A. A., Tetreault, J. W., Lappalainen, P., Drubin, D. G. & Amberg, D. C. Aip1p interacts with cofilin to disassemble actin filaments. J. Cell Biol. 145, 1251–1264 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nadkarni, A. V. & Brieher, W. M. Aip1 destabilizes cofilin-saturated actin filaments by severing and accelerating monomer dissociation from ends. Curr. Biol. 24, 2749–2757 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ono, S. Functions of actin-interacting protein 1 (AIP1)/WD repeat protein 1 (WDR1) in actin filament dynamics and cytoskeletal regulation. Biochem. Biophys. Res. Commun. 506, 315–322 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Okada, K. et al. Xenopus actin-interacting protein 1 (XAip1) enhances cofilin fragmentation of filaments by capping filament ends. J. Biol. Chem. 277, 43011–43016 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Tang, V. W., Nadkarni, A. V. & Brieher, W. M. Catastrophic actin filament bursting by cofilin, Aip1, and coronin. J. Biol. Chem. 295, 13299–13313 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cai, L., Makhov, A. M. & Bear, J. E. F-actin binding is essential for coronin 1B function in vivo. J. Cell Sci. 120, 1779–1790 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Ge, P., Durer, Z. A. O., Kudryashov, D., Zhou, Z. H. & Reisler, E. Cryo-EM reveals different coronin binding modes for ADP– and ADP–BeFx actin filaments. Nat. Struct. Mol. Biol. 21, 1075–1081 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Humphries, C. L. et al. Direct regulation of Arp2/3 complex activity and function by the actin binding protein coronin. J. Cell Biol. 159, 993–1004 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A. & Bear, J. E. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915–929 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cai, L., Makhov, A. M., Schafer, D. A. & Bear, J. E. Coronin 1B antagonizes cortactin and remodels Arp2/3-containing actin branches in lamellipodia. Cell 134, 828–842 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Rodal, A. A. et al. Conformational changes in the Arp2/3 complex leading to actin nucleation. Nat. Struct. Mol. Biol. 12, 26–31 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Liu, S.-L., Needham, K. M., May, J. R. & Nolen, B. J. Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3 complex by coronin. J. Biol. Chem. 286, 17039–17046 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Abella, J. V. G. et al. Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat. Cell Biol. 18, 76–86 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Luan, Q. & Nolen, B. J. Structural basis for regulation of Arp2/3 complex by GMF. Nat. Struct. Mol. Biol. 20, 1062–1068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Gandhi, M. et al. GMF is a cofilin homolog that binds Arp2/3 complex to stimulate filament debranching and inhibit actin nucleation. Curr. Biol. 20, 861–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Boczkowska, M., Rebowski, G. & Dominguez, R. Glia maturation factor (GMF) interacts with Arp2/3 complex in a nucleotide state-dependent manner. J. Biol. Chem. 288, 25683–25688 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Schafer, D. A., Jennings, P. B. & Cooper, J. A. Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J. Cell Biol. 135, 169–179 (1996).

    Article  CAS  PubMed  Google Scholar 

  128. Miyoshi, T. et al. Actin turnover–dependent fast dissociation of capping protein in the dendritic nucleation actin network: evidence of frequent filament severing. J. Cell Biol. 175, 947–955 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hakala, M. et al. Twinfilin uncaps filament barbed ends to promote turnover of lamellipodial actin networks. Nat. Cell Biol. 23, 147–159 (2021). This study reveals that twinfilin uncaps actin filaments in vitro and in cells, and additionally promotes actin filament barbed end depolymerization.

    Article  CAS  PubMed  Google Scholar 

  130. Shekhar, S., Hoeprich, G. J., Gelles, J. & Goode, B. L. Twinfilin bypasses assembly conditions and actin filament aging to drive barbed end depolymerization. J. Cell Biol. 220, e202006022 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Goode, B. L., Drubin, D. G. & Lappalainen, P. Regulation of the cortical actin cytoskeleton in budding yeast by twinfilin, a ubiquitous actin monomer-sequestering protein. J. Cell Biol. 142, 723–733 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mwangangi, D. M., Manser, E. & Robinson, R. C. The structure of the actin filament uncapping complex mediated by twinfilin. Sci. Adv. 7, eabd5271 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Helfer, E. et al. Mammalian twinfilin sequesters ADP-G-actin and caps filament barbed ends: implications in motility. EMBO J. 25, 1184–1195 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Falck, S. et al. Biological role and structural mechanism of twinfilin–capping protein interaction. EMBO J. 23, 3010–3019 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Johnston, A. B. et al. A novel mode of capping protein-regulation by twinfilin. Elife 7, e41313 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Jung, G. et al. V-1 regulates capping protein activity in vivo. Proc. Natl Acad. Sci. USA 113, E6610–E6619 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Shekhar, S., Pernier, J. & Carlier, M.-F. Regulators of actin filament barbed ends at a glance. J. Cell Sci. 129, 1085–1091 (2016).

    CAS  PubMed  Google Scholar 

  138. Heiss, S. G. & Cooper, J. A. Regulation of CapZ, an actin capping protein of chicken muscle, by anionic phospholipids. Biochemistry 30, 8753–8758 (1991).

    Article  CAS  PubMed  Google Scholar 

  139. Stark, B. C., Lanier, M. H. & Cooper, J. A. CARMIL family proteins as multidomain regulators of actin-based motility. Mol. Biol. Cell 28, 1713–1723 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hotulainen, P. & Lappalainen, P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Fritzsche, M., Erlenkämper, C., Moeendarbary, E., Charras, G. & Kruse, K. Actin kinetics shapes cortical network structure and mechanics. Sci. Adv. 2, e1501337 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Lawson, C. D. & Ridley, A. J. Rho GTPase signaling complexes in cell migration and invasion. J. Cell Biol. 217, 447–457 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Senju, Y. & Lappalainen, P. Regulation of actin dynamics by PI(4,5)P2 in cell migration and endocytosis. Curr. Opin. Cell Biol. 56, 7–13 (2019).

    Article  CAS  PubMed  Google Scholar 

  144. Mehidi, A. et al. Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration. Nat. Cell Biol. 23, 1148–1162 (2021). This article describes how, in lamellipodia, forces originating from single actin filament elongation locally control the trapping and activation of the WRC and its downstream activation of the Arp2/3 complex in situ. WAVE lateral movements parallel to the lamellipodium tip highlight the complexity of filament orientation in this region.

    Article  CAS  PubMed  Google Scholar 

  145. Bieling, P. et al. Force feedback controls motor activity and mechanical properties of self-assembling branched actin networks. Cell 164, 115–127 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Li, T.-D., Bieling, P., Weichsel, J., Mullins, R. D. & Fletcher, D. A. The molecular mechanism of load adaptation by branched actin networks. Preprint at bioRxiv https://doi.org/10.1101/2021.05.24.445507 (2021). This study reveals that the Brownian ratchet governs the load adaptation of the steady-state growth of branched actin networks. A decrease in filament elongation and Arp2/3 filament branching is accompanied by a reduction in filament barbed end capping, resulting in a denser branched network.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Oakes, P. W. et al. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nat. Commun. 8, 15817 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Winkelman, J. D., Anderson, C. A., Suarez, C., Kovar, D. R. & Gardel, M. L. Evolutionarily diverse LIM domain-containing proteins bind stressed actin filaments through a conserved mechanism. Proc. Natl Acad. Sci. USA 117, 25532–25542 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Sun, X. et al. Mechanosensing through direct binding of tensed F-actin by LIM domains. Dev. Cell 55, 468–482.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Risca, V. I. et al. Actin filament curvature biases branching direction. Proc. Natl Acad. Sci. USA 109, 2913–2918 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Dogterom, M. & Yurke, B. Measurement of the force-velocity relation for growing microtubules. Science 278, 856–860 (1997).

    Article  CAS  PubMed  Google Scholar 

  152. Jégou, A., Carlier, M.-F. & Romet-Lemonne, G. Formin mDia1 senses and generates mechanical forces on actin filaments. Nat. Commun. 4, 1883 (2013).

    Article  PubMed  Google Scholar 

  153. Courtemanche, N., Lee, J. Y., Pollard, T. D. & Greene, E. C. Tension modulates actin filament polymerization mediated by formin and profilin. Proc. Natl Acad. Sci. USA 110, 9752–9757 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kubota, H. et al. Biphasic effect of profilin impacts the formin mDia1 force-sensing mechanism in actin polymerization. Biophys. J. 113, 461–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Yu, M. et al. mDia1 senses both force and torque during F-actin filament polymerization. Nat. Commun. 8, 1650 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Zimmermann, D. et al. Mechanoregulated inhibition of formin facilitates contractile actomyosin ring assembly. Nat. Commun. 8, 703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Valencia, F. R. et al. Force-dependent activation of actin elongation factor mDia1 protects the cytoskeleton from mechanical damage and promotes stress fiber repair. Dev. Cell 56, 3288–3302.e5 (2021).

    Article  CAS  PubMed  Google Scholar 

  158. Cao, L. et al. Modulation of formin processivity by profilin and mechanical tension. Elife 7, e34176 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Suzuki, E. L. et al. Geometrical constraints greatly hinder formin mDia1 activity. Nano Lett. 20, 22–32 (2020).

    Article  CAS  PubMed  Google Scholar 

  160. Jégou, A. & Romet-Lemonne, G. Mechanically tuning actin filaments to modulate the action of actin-binding proteins. Curr. Opin. Cell Biol. 68, 72–80 (2021).

    Article  PubMed  Google Scholar 

  161. Pimpale, L. G., Middelkoop, T. C., Mietke, A. & Grill, S. W. Cell lineage-dependent chiral actomyosin flows drive cellular rearrangements in early Caenorhabditis elegans development. Elife 9, e54930 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tee, Y. H. et al. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat. Cell Biol. 17, 445–457 (2015).

    Article  CAS  PubMed  Google Scholar 

  163. Lebreton, G. et al. Molecular to organismal chirality is induced by the conserved myosin 1D. Science 362, 949–952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kishino, A. & Yanagida, T. Force measurements by micromanipulation of a single actin filament by glass needles. Nature 334, 74–76 (1988).

    Article  CAS  PubMed  Google Scholar 

  165. Tsuda, Y., Yasutake, H., Ishijima, A. & Yanagida, T. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation. Proc. Natl Acad. Sci. USA 93, 12937–12942 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pandit, N. G. et al. Force and phosphate release from Arp2/3 complex promote dissociation of actin filament branches. Proc. Natl Acad. Sci. USA 117, 13519–13528 (2020). This article shows that debranching of fission yeast Arp2/3 branched junctions is accelerated by two orders of magnitude when a 2-pN pulling force is applied on the ‘daughter’ filament but not on the mother filament. Debranching of ‘old’ ADP–Arp2/3 complexes is 20 times more sensitive to pulling force and to fission yeast GMF than that of ‘young’ ADP–Pi ones.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pernier, J. et al. Myosin 1b flattens and prunes branched actin filaments. J. Cell Sci. 133, jcs247403 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vignaud, T. et al. Stress fibres are embedded in a contractile cortical network. Nat. Mater. 20, 410–420 (2021).

    Article  CAS  PubMed  Google Scholar 

  169. Mei, L. et al. Molecular mechanism for direct actin force-sensing by α-catenin. Elife 9, e62514 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hayakawa, K., Tatsumi, H. & Sokabe, M. Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament. J. Cell Biol. 195, 721–727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wioland, H., Jegou, A. & Romet-Lemonne, G. Torsional stress generated by ADF/cofilin on cross-linked actin filaments boosts their severing. Proc. Natl Acad. Sci. USA 116, 2595–2602 (2019). This article shows that twist-constrained filaments experience a mechanical torque upon cofilin binding that dramatically enhances their severing. Furthermore, filament curvature favours cofilin severing, but tension has barely any effect.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Pavlov, D., Muhlrad, A., Cooper, J., Wear, M. & Reisler, E. Actin filament severing by cofilin. J. Mol. Biol. 365, 1350–1358 (2007).

    Article  CAS  PubMed  Google Scholar 

  173. Wu, C. et al. Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148, 973–987 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Krause, M. & Gautreau, A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15, 577–590 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Case, L. B. & Waterman, C. M. Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat. Cell Biol. 17, 955–963 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vitriol, E. A., Wise, A. L., Berginski, M. E., Bamburg, J. R. & Zheng, J. Q. Instantaneous inactivation of cofilin reveals its function of F-actin disassembly in lamellipodia. Mol. Biol. Cell 24, 2238–2247 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Rotty, J. D. et al. Profilin-1 serves as a gatekeeper for actin assembly by Arp2/3-dependent and -independent pathways. Dev. Cell 32, 54–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Poukkula, M. et al. GMF promotes leading-edge dynamics and collective cell migration in vivo. Curr. Biol. 24, 2533–2540 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chaudhuri, O., Parekh, S. H. & Fletcher, D. A. Reversible stress softening of actin networks. Nature 445, 295–298 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Bauër, P. et al. A new method to measure mechanics and dynamic assembly of branched actin networks. Sci. Rep. 7, 15688 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Mueller, J. et al. Load adaptation of Lamellipodial actin networks. Cell 171, 188–200.e16 (2017). This publication demonstrates that the density and architecture of lamellipodial actin filament networks in cells adapt to load.

    Article  CAS  PubMed  Google Scholar 

  182. Garner, R. M. & Theriot, J. A. Leading edge maintenance in migrating cells is an emergent property of branched actin network growth. Elife 11, e74389 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Lu, R., Drubin, D. G. & Sun, Y. Clathrin-mediated endocytosis in budding yeast at a glance. J. Cell Sci. 129, 1531–1536 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  185. Aghamohammadzadeh, S. & Ayscough, K. R. Differential requirements for actin during yeast and mammalian endocytosis. Nat. Cell Biol. 11, 1039–1042 (2009).

    Article  CAS  PubMed  Google Scholar 

  186. Boulant, S., Kural, C., Zeeh, J.-C., Ubelmann, F. & Kirchhausen, T. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Mund, M. et al. Systematic nanoscale analysis of endocytosis links efficient vesicle formation to patterned actin nucleation. Cell 174, 884–896.e17 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Almeida-Souza, L. et al. A flat BAR protein promotes actin polymerization at the base of clathrin-coated pits. Cell 174, 325–337.e14 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Akamatsu, M. et al. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. Elife 9, e49840 (2020). This article shows that endocytic actin filament networks respond to load. The authors additionally reveal that actin filaments in these structures are bent to store elastic energy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Serwas, D. et al. Actin force generation in vesicle formation: mechanistic insights from cryo-electron tomography. Preprint at bioRxiv https://doi.org/10.1101/2021.06.28.450262 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Skruzny, M. et al. Molecular basis for coupling the plasma membrane to the actin cytoskeleton during clathrin-mediated endocytosis. Proc. Natl Acad. Sci. USA 109, E2533–E2542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Abella, M., Andruck, L., Malengo, G. & Skruzny, M. Actin-generated force applied during endocytosis measured by Sla2-based FRET tension sensors. Dev. Cell 56, 2419–2426.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Manenschijn, H. E. et al. Type-I myosins promote actin polymerization to drive membrane bending in endocytosis. Elife 8, e44215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Pedersen, R. T. A. & Drubin, D. G. Type I myosins anchor actin assembly to the plasma membrane during clathrin-mediated endocytosis. J. Cell Biol. 218, 1138–1147 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Sirotkin, V., Berro, J., Macmillan, K., Zhao, L. & Pollard, T. D. Quantitative analysis of the mechanism of endocytic actin patch assembly and disassembly in fission yeast. Mol. Biol. Cell 21, 2894–2904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Taylor, M. J., Perrais, D. & Merrifield, C. J. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLoS Biol. 9, e1000604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Kaksonen, M., Toret, C. P. & Drubin, D. G. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Toshima, J. Y. et al. Srv2/CAP is required for polarized actin cable assembly and patch internalization during clathrin-mediated endocytosis. J. Cell Sci. 129, 367–379 (2016).

    CAS  PubMed  Google Scholar 

  199. Dmitrieff, S. & Nédélec, F. Amplification of actin polymerization forces. J. Cell Biol. 212, 763–766 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Kaplan, C. et al. Load adaptation by endocytic actin networks. Mol. Biol. Cell https://doi.org/10.1091/mbc.E21-11-0589 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Blanchoin, L. & Pollard, T. D. Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. J. Biol. Chem. 274, 15538–15546 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Suarez, C. et al. Profilin regulates F-actin network homeostasis by favoring formin over Arp2/3 complex. Dev. Cell 32, 43–53 (2015).

    Article  CAS  PubMed  Google Scholar 

  203. Skruber, K. et al. Arp2/3 and Mena/VASP require profilin 1 for actin network assembly at the leading edge. Curr. Biol. 30, 2651–2664.e5 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mohapatra, L., Lagny, T. J., Harbage, D., Jelenkovic, P. R. & Kondev, J. The limiting-pool mechanism fails to control the size of multiple organelles. Cell Syst. 4, 559–567.e14 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Michelot, A. & Drubin, D. G. Building distinct actin filament networks in a common cytoplasm. Curr. Biol. 21, 560–569 (2011).

    Article  Google Scholar 

  206. Antkowiak, A. et al. Sizes of actin networks sharing a common environment are determined by the relative rates of assembly. PLoS Biol. 17, e3000317 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Burnette, D. T. et al. A role for actin arcs in the leading-edge advance of migrating cells. Nat. Cell Biol. 13, 371–382 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lehtimäki, J. I., Rajakylä, E. K., Tojkander, S. & Lappalainen, P. Generation of stress fibers through myosin-driven reorganization of the actin cortex. Elife 10, e60710 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Reversat, A. et al. Cellular locomotion using environmental topography. Nature 582, 582–585 (2020).

    Article  CAS  PubMed  Google Scholar 

  210. Gaertner, F. et al. WASp triggers mechanosensitive actin patches to facilitate immune cell migration in dense tissues. Dev. Cell 57, 47–62.e9 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Simunovic, M., Evergren, E., Callan-Jones, A. & Bassereau, P. Curving cells inside and out: roles of BAR domain proteins in membrane shaping and its cellular implications. Annu. Rev. Cell Dev. Biol. 35, 111–129 (2019).

    Article  CAS  PubMed  Google Scholar 

  212. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  PubMed  Google Scholar 

  213. Jégou, A. et al. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin. PLoS Biol. 9, e1001161 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Rosenbloom, A. D., Kovar, E. W., Kovar, D. R., Loew, L. M. & Pollard, T. D. Mechanism of actin filament nucleation. Biophys. J. 120, 4399–4417 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Pekka Lappalainen.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Klemens Rottner, David Kovar, who co-reviewed with Cristian Suarez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Barbed end

The rapidly growing end of an actin filament, as opposed to the pointed end. In cells, actin filament barbed ends typically face the plasma membrane or cellular organelles. Polymerization of actin filaments at their barbed end generates a pushing force.

Pointed end

The slowly growing end of an actin filament. For pure actin in the steady state, actin filament disassembly predominantly occurs at the filament pointed ends.

Treadmilling

Phenomenon originating from simultaneous elongation of an actin filament at its barbed end and depolymerization from its pointed end. In the steady state, the polymerization and depolymerization rates are equal, and thus the filament has a constant length, while monomers flow through the filament from barbed ends to pointed ends.

Mechanosensing

The ability of a cell to sense its mechanical environment. The information from the mechanical environment is often translated into biochemical signals, which can control multiple processes of the cell.

Fascin

An actin-bundling protein that organizes filaments with similar orientations in dense arrays. Fascin 1 is the main bundling protein in filopodial structures.

CARMIL

Family of proteins involved in migration and morphogenesis of animal cells. CARMILs interact with capping protein (CP) at the leading edge of motile cells and control the association of CP with and the dissociation of CP from actin filament barbed ends.

Stress fibres

Contractile actomyosin bundles of a non-muscle cell. Stress fibres are typically associated from their ends with extracellular matrix through focal adhesions, and are thus important for cell adhesion, morphogenesis and mechanosensing.

WAVE regulatory complex

(WRC). A pentameric complex that contains the nucleation-promoting factor WAVE. Upon activation by Rac1, WAVE can bind and activate the Arp2/3 complex to form branch networks implicated in cell protrusion.

Chiral processes

An object, or a process, is chiral if it is distinguishable from its mirror image. Chiral processes may lead to asymmetric distributions of organelles and the appearance of concentration gradients at the cellular level or tissue level, and possibly the emergence of left–right asymmetry at the organism level.

LIM domain proteins

A large family of proteins that contain one or several LIM domains, and whose localization to actin cytoskeleton structures such as stress fibres is enhanced upon mechanical stress application. Most well-known proteins are the members from the zyxin, paxillin and FHL subfamily.

α-Catenin

Protein involved in the complex regulation of cell–cell adhesion, mainly by acting as a mechanosensitive adaptor protein, linking the actin cytoskeleton to transmembrane proteins called ‘cadherins’.

Turgor pressure

Force, originating from the osmotic pressure inside the cell, which pushes the plasma membrane against the cell wall in plants, yeasts and bacteria.

ENTH/ANTH domain proteins

A family of actin- and membrane-binding proteins which contribute to endocytosis. These proteins can link elongating actin filaments to the endocytic invagination.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lappalainen, P., Kotila, T., Jégou, A. et al. Biochemical and mechanical regulation of actin dynamics. Nat Rev Mol Cell Biol 23, 836–852 (2022). https://doi.org/10.1038/s41580-022-00508-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00508-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing