Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Interfaces in organic electronics

Abstract

Undoped, conjugated, organic molecules and polymers possess properties of semiconductors, including the electronic structure and charge transport, which can be readily tuned by chemical design. Moreover, organic semiconductors (OSs) can be n-doped or p-doped to become organic conductors and can exhibit mixed electronic and ionic conductivity. Compared with inorganic semiconductors and metals, organic (semi)conductors possess a unique feature: no insulating oxide forms on their surface when exposed to air. Thus, OSs form clean interfaces with many materials, including metals and other OSs. OS–metal and OS–OS interfaces have been intensely investigated over the past 30 years, from which a consistent theoretical description has emerged. Since the 2000s, increased attention has been paid to interfaces in organic electronics that involve dielectrics, electrolytes, ferroelectrics and even biological organisms. In this Review, we consider the central role of these interfaces in the function of organic electronic devices and discuss how the physico-chemical properties of the interfaces govern the interfacial transport of light, excitons, electrons and ions, as well as the transduction of electrons into the molecular language of cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of organic semiconductors.
Fig. 2: Interfaces in organic electronic devices.
Fig. 3: Organic semiconductor–metal interfaces.
Fig. 4: Multilayer organic semiconductor interfaces.
Fig. 5: Dipole potential steps at organic semiconductor–organic semiconductor interfaces.
Fig. 6: Organic semiconductor–dielectric interfaces.
Fig. 7: Organic semiconductor–electrolyte interfaces.
Fig. 8: Electrochemical processes in organic semiconductors
Fig. 9: Communication between biological organisms and organic electronics.

Similar content being viewed by others

References

  1. Yoon, C. O. et al. Hopping transport in doped conducting polymers in the insulating regime near the metal-insulator boundary: polypyrrole, polyaniline and polyalkylthiophenes. Synth. Met. 75, 229–239 (1995).

    Article  CAS  Google Scholar 

  2. Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).

    Article  CAS  Google Scholar 

  3. Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014).

    Article  CAS  Google Scholar 

  4. Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  5. Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. Electron transport materials for organic light-emitting diodes. Chem. Mater. 16, 4556–4573 (2004).

    Article  CAS  Google Scholar 

  6. Blochwitz, J., Pfeiffer, M., Fritz, T. & Leo, K. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl. Phys. Lett. 73, 729–731 (1998).

    Article  CAS  Google Scholar 

  7. Sun, Y. et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 440, 908–912 (2006).

    Article  CAS  Google Scholar 

  8. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  Google Scholar 

  9. Hebner, T. R., Wu, C. C., Marcy, D., Lu, M. H. & Sturm, J. C. Ink-jet printing of doped polymers for organic light emitting devices. Appl. Phys. Lett. 72, 519–521 (1998).

    Article  CAS  Google Scholar 

  10. Han, T.-H. et al. Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat. Photonics 6, 105–110 (2012).

    Article  CAS  Google Scholar 

  11. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494–499 (2009).

    Article  CAS  Google Scholar 

  12. Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    Article  CAS  Google Scholar 

  13. Hoppe, H. & Sariciftci, N. S. Organic solar cells: an overview. J. Mater. Res. 19, 1924–1945 (2004).

    Article  CAS  Google Scholar 

  14. Darling, S. B. & You, F. The case for organic photovoltaics. RSC Adv. 3, 17633–17648 (2013).

    Article  CAS  Google Scholar 

  15. Meng, L. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361, 1094–1098 (2018).

    Article  CAS  Google Scholar 

  16. Azzopardi, B. et al. Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment. Energy Environ. Sci. 4, 3741–3753 (2011).

    Article  Google Scholar 

  17. Diez Cabanes, V. et al. Energy level alignment at interfaces between Au (111) and thiolated oligophenylenes of increasing chain size: theoretical evidence of pinning effects. Adv. Theory Simul. 1, 1700020 (2018).

    Article  CAS  Google Scholar 

  18. Beljonne, D. et al. Electronic processes at organic–organic interfaces: insight from modeling and implications for opto-electronic devices. Chem. Mater. 23, 591–609 (2011).

    Article  CAS  Google Scholar 

  19. Krebs, F. C. Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol. Energy Mater. Sol. Cells 93, 394–412 (2009).

    Article  CAS  Google Scholar 

  20. Fahlman, M. & Salaneck, W. R. Surfaces and interfaces in polymer-based electronics. Surf. Sci. 500, 904–922 (2002).

    Article  CAS  Google Scholar 

  21. Braun, S., Salaneck, W. R. & Fahlman, M. Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21, 1450–1472 (2009).

    Article  CAS  Google Scholar 

  22. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    Article  CAS  Google Scholar 

  23. Dimitrakopoulos, C. D. & Malenfant, P. R. L. Organic thin film transistors for large area electronics. Adv. Mater. 14, 99–117 (2002).

    Article  CAS  Google Scholar 

  24. Sirringhaus, H. Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17, 2411–2425 (2005).

    Article  CAS  Google Scholar 

  25. Choi, H. H., Cho, K., Frisbie, C. D., Sirringhaus, H. & Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2–7 (2017).

    Article  CAS  Google Scholar 

  26. Mathijssen, S. G. J. et al. Monolayer coverage and channel length set the mobility in self-assembled monolayer field-effect transistors. Nat. Nanotechnol. 4, 674–680 (2009).

    Article  CAS  Google Scholar 

  27. Hulea, I. N. et al. Tunable Fröhlich polarons in organic single-crystal transistors. Nat. Mater. 5, 982–986 (2006).

    Article  CAS  Google Scholar 

  28. Chua, L.-L. et al. General observation of n-type field-effect behaviour in organic semiconductors. Nature 434, 194–199 (2005).

    Article  CAS  Google Scholar 

  29. Takeya, J. et al. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 90, 102120 (2007).

    Article  CAS  Google Scholar 

  30. Chen, H. et al. Dithiopheneindenofluorene (TIF) semiconducting polymers with very high mobility in field-effect transistors. Adv. Mater. 29, 1702523 (2017).

    Article  CAS  Google Scholar 

  31. Wang, S. et al. Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proc. Natl Acad. Sci. USA 112, 10599–10604 (2015).

    Article  CAS  Google Scholar 

  32. Halik, M. et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431, 963–966 (2004).

    Article  CAS  Google Scholar 

  33. Dimitrakopoulos, C. D., Purushothaman, S., Kymissis, J., Callegari, A. & Shaw, J. M. Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822–824 (1999).

    Article  CAS  Google Scholar 

  34. Kim, S. H. et al. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 25, 1822–1846 (2013).

    Article  CAS  Google Scholar 

  35. Naber, R. C. G., Asadi, K., Blom, P. W. M., de Leeuw, D. M. & de Boer, B. Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 22, 933–945 (2010).

    Article  CAS  Google Scholar 

  36. Ghosh, S. & Inganäs, O. Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Adv. Mater. 11, 1214–1218 (1999).

    Article  CAS  Google Scholar 

  37. Novák, P., Müller, K., Santhanam, K. S. V. & Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev. 97, 207–282 (1997).

    Article  Google Scholar 

  38. Dhoot, A. S. et al. Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. Proc. Natl Acad. Sci. USA 103, 11834–11837 (2006).

    Article  CAS  Google Scholar 

  39. Qibing, P., Gang, Y., Chi, Z., Yang, Y. & Alan, J. H. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    Article  Google Scholar 

  40. Shin, J. H., Robinson, N. D., Xiao, S. & Edman, L. Polymer light-emitting electrochemical cells: doping concentration, emission-zone position, and turn-on time. Adv. Funct. Mater. 17, 1807–1813 (2007).

    Article  CAS  Google Scholar 

  41. Herlogsson, L. et al. Low-voltage polymer field-effect transistors gated via a proton conductor. Adv. Mater. 19, 97–101 (2007).

    Article  CAS  Google Scholar 

  42. Said, E., Larsson, O., Berggren, M. & Crispin, X. Effects of the ionic currents in electrolyte-gated organic field-effect transistors. Adv. Funct. Mater. 18, 3529–3536 (2008).

    Article  CAS  Google Scholar 

  43. Cho, J. H. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

  44. Isaksson, J. et al. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6, 673–679 (2007).

    Article  CAS  Google Scholar 

  45. Jonsson, A. et al. Therapy using implanted organic bioelectronics. Sci. Adv. 1, e1500039 (2015).

    Article  CAS  Google Scholar 

  46. Bubnova, O. et al. Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). Nat. Mater. 10, 429–433 (2011).

    Article  CAS  Google Scholar 

  47. Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).

    Article  CAS  Google Scholar 

  48. Rivnay, J., Owens, R. M. & Malliaras, G. G. The rise of organic bioelectronics. Chem. Mater. 26, 679–685 (2014).

    Article  CAS  Google Scholar 

  49. Simon, D. T., Gabrielsson, E. O., Tybrandt, K. & Berggren, M. Organic bioelectronics: bridging the signaling gap between biology and technology. Chem. Rev. 116, 13009–13041 (2016).

    Article  CAS  Google Scholar 

  50. Mitraka, E. et al. Electrocatalytic production of hydrogen peroxide with poly(3,4-ethylenedioxythiophene) electrodes. Adv. Sustain. Syst. 3, 1800110 (2018).

    Article  CAS  Google Scholar 

  51. Coskun, H. et al. Biofunctionalized conductive polymers enable efficient CO2 electroreduction. Sci. Adv. 3, e1700686 (2017).

    Article  CAS  Google Scholar 

  52. Malti, A. et al. An organic mixed ion–electron conductor for power electronics. Adv. Sci. 3, 1500305 (2016).

    Article  CAS  Google Scholar 

  53. Wang, Z. et al. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 9, 7563–7571 (2015).

    Article  CAS  Google Scholar 

  54. Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv. Mater. 11, 972–972 (1999).

    Article  CAS  Google Scholar 

  55. Lang, N. D. & Kohn, W. Theory of metal surfaces: work function. Phys. Rev. B 3, 1215–1223 (1971).

    Article  Google Scholar 

  56. Chen, Y. C., Cunnigham, J. E. & Flynn, C. P. Dependence of rare-gas-adsorbate dipole moment on substrate work function. Phys. Rev. B 30, 7317–7319 (1984).

    Article  CAS  Google Scholar 

  57. Crispin, X. et al. Characterization of the interface dipole at organic/metal interfaces. J. Am. Chem. Soc. 124, 8131–8141 (2002).

    Article  CAS  Google Scholar 

  58. Osikowicz, W. et al. Energetics at Au top and bottom contacts on conjugated polymers. Appl. Phys. Lett. 88, 193504 (2006).

    Article  CAS  Google Scholar 

  59. Goiri, E., Borghetti, P., El-Sayed, A., Ortega, J. E. & de Oteyza, D. G. Multi-component organic layers on metal substrates. Adv. Mater. 28, 1340–1368 (2016).

    Article  CAS  Google Scholar 

  60. Monti, O. L. A. Understanding interfacial electronic structure and charge transfer: an electrostatic perspective. J. Phys. Chem. Lett. 3, 2342–2351 (2012).

    Article  CAS  Google Scholar 

  61. van Reenen, S., Kouijzer, S., Janssen, R. A. J., Wienk, M. M. & Kemerink, M. Origin of work function modification by ionic and amine-based interface layers. Adv. Mater. Interfaces 1, 1400189 (2014).

    Article  CAS  Google Scholar 

  62. Bao, Q. Y., Liu, X. J., Braun, S., Gao, F. & Fahlman, M. Energetics at doped conjugated polymer/electrode interfaces. Adv. Mater. Interfaces 2, 1400403 (2015).

    Article  CAS  Google Scholar 

  63. Mityashin, A. et al. Unraveling the mechanism of molecular doping in organic semiconductors. Adv. Mater. 24, 1535–1539 (2012).

    Article  CAS  Google Scholar 

  64. Bokdam, M., Cakir, D. & Brocks, G. Fermi level pinning by integer charge transfer at electrode-organic semiconductor interfaces. Appl. Phys. Lett. 98, 113303 (2011).

    Article  CAS  Google Scholar 

  65. Greiner, M. T. et al. Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11, 76–81 (2011).

    Article  CAS  Google Scholar 

  66. Ley, L., Smets, Y., Pakes, C. I. & Ristein, J. Calculating the universal energy-level alignment of organic molecules on metal oxides. Adv. Funct. Mater. 23, 794–805 (2013).

    Article  CAS  Google Scholar 

  67. Oehzelt, M., Koch, N. & Heimel, G. Organic semiconductor density of states controls the energy level alignment at electrode interfaces. Nat. Commun. 5, 4174 (2014).

    Article  CAS  Google Scholar 

  68. Salaneck, W. R. Intermolecular relaxation energies in anthracene. Phys. Rev. Lett. 40, 60–63 (1978).

    Article  CAS  Google Scholar 

  69. Duhm, S. et al. Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies. Nat. Mater. 7, 326–332 (2008).

    Article  CAS  Google Scholar 

  70. Bao, Q. Y. et al. Energy level bending in ultrathin polymer layers obtained through Langmuir–Shäfer deposition. Adv. Funct. Mater. 26, 1077–1084 (2016).

    Article  CAS  Google Scholar 

  71. Lindell, L., Vahlberg, C., Uvdal, K., Fahlman, M. & Braun, S. Self-assembled monolayer engineered interfaces: energy level alignment tuning through chain length and end-group polarity. J. Electron. Spectros. Relat. Phenomena 240, 140–144 (2015).

    Article  CAS  Google Scholar 

  72. Kotadiya, N. B. et al. Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies. Nat. Mater. 17, 329–334 (2018).

    Article  CAS  Google Scholar 

  73. Friederich, P. et al. Rational in silico design of an organic semiconductor with improved electron mobility. Adv. Mater. 29, 1703505 (2017).

    Article  CAS  Google Scholar 

  74. Cakir, D., Bokdam, M., de Jong, M. P., Fahlman, M. & Brocks, G. Modeling charge transfer at organic donor-acceptor semiconductor interfaces. Appl. Phys. Lett. 100, 203302 (2012).

    Article  CAS  Google Scholar 

  75. Yang, J. P., Bussolotti, F., Kera, S. & Ueno, N. Origin and role of gap states in organic semiconductor studied by UPS: as the nature of organic molecular crystals. J. Phys. D 50, 423002 (2017).

    Article  CAS  Google Scholar 

  76. Verlaak, S. et al. Electronic structure and geminate pair energetics at organic–organic interfaces: the case of pentacene/C60 heterojunctions. Adv. Funct. Mater. 19, 3809–3814 (2009).

    Article  CAS  Google Scholar 

  77. Méndez, H. et al. Doping of organic semiconductors: impact of dopant strength and electronic coupling. Angew. Chem. Int. Ed. 52, 7751–7755 (2013).

    Article  CAS  Google Scholar 

  78. Méndez, H. et al. Charge-transfer crystallites as molecular electrical dopants. Nat. Commun. 6, 8560 (2015).

    Article  CAS  Google Scholar 

  79. Zhang, Q. et al. Ground-state charge transfer for NIR absorption with donor/acceptor molecules: interactions mediated via energetics and orbital symmetries. J. Mater. Chem. C 5, 275–281 (2017).

    Article  CAS  Google Scholar 

  80. Breuer, T., Karthauser, A. & Witte, G. Effects of molecular orientation in acceptor–donor interfaces between pentacene and C60 and Diels–Alder adduct formation at the molecular interface. Adv. Mater. Interfaces 3, 1500452 (2016).

    Article  CAS  Google Scholar 

  81. Braun, S., Liu, X., Salaneck, W. R. & Fahlman, M. Fermi level equilibrium at donor–acceptor interfaces in multi-layered thin film stack of TTF and TCNQ. Org. Electron. 11, 212–217 (2010).

    Article  CAS  Google Scholar 

  82. Brocks, G., Cakir, D., Bokdam, M., de Jong, M. P. & Fahlman, M. Charge equilibration and potential steps in organic semiconductor multilayers. Org. Electron. 13, 1793–1801 (2012).

    Article  CAS  Google Scholar 

  83. Oehzelt, M., Akaike, K., Koch, N. & Heimel, G. Energy-level alignment at organic heterointerfaces. Sci. Adv. 1, e1501127 (2015).

    Article  Google Scholar 

  84. Liu, X. K. et al. Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex. Adv. Mater. 27, 2025–2030 (2015).

    Article  CAS  Google Scholar 

  85. Vandewal, K., Tvingstedt, K., Gadisa, A., Inganas, O. & Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 8, 904–909 (2009).

    Article  CAS  Google Scholar 

  86. Guan, Z. Q. et al. Charge-transfer state energy and its relationship with open-circuit voltage in an organic photovoltaic device. J. Phys. Chem. C 120, 14059–14068 (2016).

    Article  CAS  Google Scholar 

  87. Yang, Q. D. et al. Probing the energy level alignment and the correlation with open-circuit voltage in solution-processed polymeric bulk heterojunction photovoltaic devices. ACS Appl. Mater. Interfaces 8, 7283–7290 (2016).

    Article  CAS  Google Scholar 

  88. Tada, A., Geng, Y. F., Wei, Q. S., Hashimoto, K. & Tajima, K. Tailoring organic heterojunction interfaces in bilayer polymer photovoltaic devices. Nat. Mater. 10, 450–455 (2011).

    Article  CAS  Google Scholar 

  89. Aarnio, H. et al. Spontaneous charge transfer and dipole formation at the interface between P3HT and PCBM. Adv. Energy Mater. 1, 792–797 (2011).

    Article  CAS  Google Scholar 

  90. Arkhipov, V. I., Heremans, P. & Bassler, H. Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Appl. Phys. Lett. 82, 4605–4607 (2003).

    Article  CAS  Google Scholar 

  91. Bao, Q. Y. et al. Trap-assisted recombination via integer charge transfer states in organic bulk heterojunction photovoltaics. Adv. Funct. Mater. 24, 6309–6316 (2014).

    Article  CAS  Google Scholar 

  92. Proudian, A. P. et al. Effect of Diels–Alder reaction in C60-tetracene photovoltaic devices. Nano Lett. 16, 6086–6091 (2016).

    Article  CAS  Google Scholar 

  93. Liu, J. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 1, 16089 (2016).

    Article  CAS  Google Scholar 

  94. Benduhn, J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2, 17053 (2017).

    Article  CAS  Google Scholar 

  95. Jakowetz, A. C. et al. Visualizing excitations at buried heterojunctions in organic semiconductor blends. Nat. Mater. 16, 551–557 (2017).

    Article  CAS  Google Scholar 

  96. Weiss, L. R. et al. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2017).

    Article  CAS  Google Scholar 

  97. Qian, D. P. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 17, 703–709 (2018).

    Article  CAS  Google Scholar 

  98. Menke, S. M. et al. Order enables efficient electron-hole separation at an organic heterojunction with a small energy loss. Nat. Commun. 9, 277 (2018).

    Article  CAS  Google Scholar 

  99. Yoshida, H. Principle and application of low energy inverse photoemission spectroscopy: a new method for measuring unoccupied states of organic semiconductors. J. Electron. Spectros. Relat. Phenomena 204, 116–124 (2015).

    Article  CAS  Google Scholar 

  100. Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    Article  CAS  Google Scholar 

  101. Lee, E. K., Lee, M. Y., Park, C. H., Lee, H. R. & Oh, J. H. Toward environmentally robust organic electronics: approaches and applications. Adv. Mater. 29, 1703638 (2017).

    Article  CAS  Google Scholar 

  102. Don Park, Y., Lim, J. A., Lee, H. S. & Cho, K. Interface engineering in organic transistors. Mater. Today 10, 46–54 (2007).

    Article  Google Scholar 

  103. Di, C.-a, Liu, Y., Yu, G. & Zhu, D. Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 42, 1573–1583 (2009).

    Article  CAS  Google Scholar 

  104. Patel, B. B. & Diao, Y. Multiscale assembly of solution-processed organic electronics: the critical roles of confinement, fluid flow, and interfaces. Nanotechnology 29, 044004 (2018).

    Article  CAS  Google Scholar 

  105. Fabiano, S. & Pignataro, B. Selecting speed-dependent pathways for a programmable nanoscale texture by wet interfaces. Chem. Soc. Rev. 41, 6859–6873 (2012).

    Article  CAS  Google Scholar 

  106. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, (827–863 (1985).

    Google Scholar 

  107. Diao, Y. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12, 665–671 (2013).

    Article  CAS  Google Scholar 

  108. Lee, S. S. et al. Guiding crystallization around bends and sharp corners. Adv. Mater. 24, 2692–2698 (2012).

    Article  CAS  Google Scholar 

  109. Niazi, M. R. et al. Contact-induced nucleation in high-performance bottom-contact organic thin film transistors manufactured by large-area compatible solution processing. Adv. Funct. Mater. 26, 2371–2378 (2016).

    Article  CAS  Google Scholar 

  110. Kline, R. J. et al. Controlling the microstructure of solution-processable small molecules in thin-film transistors through substrate chemistry. Chem. Mater. 23, 1194–1203 (2011).

    Article  CAS  Google Scholar 

  111. Casalini, S., Bortolotti, C. A., Leonardi, F. & Biscarini, F. Self-assembled monolayers in organic electronics. Chem. Soc. Rev. 46, 40–71 (2017).

    Article  CAS  Google Scholar 

  112. Kline, R. J., McGehee, M. D. & Toney, M. F. Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222–228 (2006).

    Article  CAS  Google Scholar 

  113. Kim, D. H. et al. Enhancement of field-effect mobility due to surface-mediated molecular ordering in regioregular polythiophene thin film transistors. Adv. Funct. Mater. 15, 77–82 (2005).

    Article  CAS  Google Scholar 

  114. Fritz, S. E., Kelley, T. W. & Frisbie, C. D. Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer. J. Phys. Chem. B 109, 10574–10577 (2005).

    Article  CAS  Google Scholar 

  115. Yang, S. Y., Shin, K. & Park, C. E. The effect of gate-dielectric surface energy on pentacene morphology and organic field-effect transistor characteristics. Adv. Funct. Mater. 15, 1806–1814 (2005).

    Article  CAS  Google Scholar 

  116. Zhang, L., Colella, N. S., Cherniawski, B. P., Mannsfeld, S. C. B. & Briseno, A. L. Oligothiophene semiconductors: synthesis, characterization, and applications for organic devices. ACS Appl. Mater. Interfaces 6, 5327–5343 (2014).

    Article  CAS  Google Scholar 

  117. Mas-Torrent, M. & Rovira, C. Role of molecular order and solid-state structure in organic field-effect transistors. Chem. Rev. 111, 4833–4856 (2011).

    Article  CAS  Google Scholar 

  118. Jones, A. O. F., Chattopadhyay, B., Geerts, Y. H. & Resel, R. Substrate-induced and thin-film phases: polymorphism of organic materials on surfaces. Adv. Funct. Mater. 26, 2233–2255 (2016).

    Article  CAS  Google Scholar 

  119. Walter, S. R. et al. In-situ probe of gate dielectric-semiconductor interfacial order in organic transistors: origin and control of large performance sensitivities. J. Am. Chem. Soc. 134, 11726–11733 (2012).

    Article  CAS  Google Scholar 

  120. Jung, Y. et al. The effect of interfacial roughness on the thin film morphology and charge transport of high-performance polythiophenes. Adv. Funct. Mater. 18, 742–750 (2008).

    Article  CAS  Google Scholar 

  121. Li, M. et al. Impact of interfacial microstructure on charge carrier transport in solution-processed conjugated polymer field-effect transistors. Adv. Mater. 28, 2245–2252 (2016).

    Article  CAS  Google Scholar 

  122. Tseng, H.-R. et al. High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 2993–2998 (2014).

    Article  CAS  Google Scholar 

  123. Lee, B. H. et al. Flexible organic transistors with controlled nanomorphology. Nano Lett. 16, 314–319 (2016).

    Article  CAS  Google Scholar 

  124. Hartmann, L. et al. 2D versus 3D crystalline order in thin films of regioregular poly(3-hexylthiophene) oriented by mechanical rubbing and epitaxy. Adv. Funct. Mater. 21, 4047–4057 (2011).

    Article  CAS  Google Scholar 

  125. Kim, C., Facchetti, A. & Marks, T. J. Polymer gate dielectric surface viscoelasticity modulates pentacene transistor performance. Science 318, 76–80 (2007).

    Article  CAS  Google Scholar 

  126. Mohammadi, E. et al. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. Nat. Commun. 8, 16070 (2017).

    Article  CAS  Google Scholar 

  127. Baeg, K.-J., Facchetti, A. & Noh, Y.-Y. Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors. J. Mater. Chem. 22, 21138–21143 (2012).

    Article  CAS  Google Scholar 

  128. Gaikwad, A. M. et al. Identifying orthogonal solvents for solution processed organic transistors. Org. Electron. 30, 18–29 (2016).

    Article  CAS  Google Scholar 

  129. Sun, X., Di, C.-a & Liu, Y. Engineering of the dielectric–semiconductor interface in organic field-effect transistors. J. Mater. Chem. 20, 2599–2611 (2010).

    Article  CAS  Google Scholar 

  130. Tsao, H. N. & Müllen, K. Improving polymer transistor performance via morphology control. Chem. Soc. Rev. 39, 2372–2386 (2010).

    Article  CAS  Google Scholar 

  131. Wang, C., Dong, H., Jiang, L. & Hu, W. Organic semiconductor crystals. Chem. Soc. Rev. 47, 422–500 (2018).

    Article  CAS  Google Scholar 

  132. Wang, B. et al. High-k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018).

    Article  CAS  Google Scholar 

  133. Nketia-Yawson, B. & Noh, Y.-Y. Recent progress on high-capacitance polymer gate dielectrics for flexible low-voltage transistors. Adv. Funct. Mater. 28, 1802201 (2018).

    Article  CAS  Google Scholar 

  134. Veres, J., Ogier, S. D., Leeming, S. W., Cupertino, D. C. & Mohialdin Khaffaf, S. Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).

    Article  CAS  Google Scholar 

  135. Ortiz, R. P., Facchetti, A. & Marks, T. J. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 110, 205–239 (2010).

    Article  CAS  Google Scholar 

  136. Richards, T., Bird, M. & Sirringhaus, H. A quantitative analytical model for static dipolar disorder broadening of the density of states at organic heterointerfaces. J. Chem. Phys. 128, 234905 (2008).

    Article  CAS  Google Scholar 

  137. Zhao, N. et al. Polaron localization at interfaces in high-mobility microcrystalline conjugated polymers. Adv. Mater. 21, 3759–3763 (2009).

    Article  CAS  Google Scholar 

  138. Veres, J., Ogier, S., Lloyd, G. & de Leeuw, D. Gate insulators in organic field-effect transistors. Chem. Mater. 16, 4543–4555 (2004).

    Article  CAS  Google Scholar 

  139. Germs, W. C., Guo, K., Janssen, R. A. J. & Kemerink, M. Unusual thermoelectric behavior indicating a hopping to bandlike transport transition in pentacene. Phys. Rev. Lett. 109, 016601 (2012).

    Article  CAS  Google Scholar 

  140. Minder, N. A., Ono, S., Chen, Z. H., Facchetti, A. & Morpurgo, A. F. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012).

    Article  CAS  Google Scholar 

  141. Sirringhaus, H. Reliability of organic field-effect transistors. Adv. Mater. 21, 3859–3873 (2009).

    Article  CAS  Google Scholar 

  142. Yoon, M.-H., Kim, C., Facchetti, A. & Marks, T. J. Gate dielectric chemical structure–organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. J. Am. Chem. Soc. 128, 12851–12869 (2006).

    Article  CAS  Google Scholar 

  143. Kim, C. et al. Printable cross-linked polymer blend dielectrics. Design strategies, synthesis, microstructures, and electrical properties, with organic field-effect transistors as testbeds. J. Am. Chem. Soc. 130, 6867–6878 (2008).

    Article  CAS  Google Scholar 

  144. Wang, A., Kymissis, I., Bulovic, V. & Akinwande, A. I. Engineering density of semiconductor-dielectric interface states to modulate threshold voltage in OFETs. IEEE Trans. Electron. Devices 53, 9–13 (2006).

    Article  CAS  Google Scholar 

  145. Lee, W. H., Choi, H. H., Kim, D. H. & Cho, K. 25th anniversary article: microstructure dependent bias stability of organic transistors. Adv. Mater. 26, 1660–1680 (2014).

    Article  CAS  Google Scholar 

  146. Mathijssen, S. G. J. et al. Dynamics of threshold voltage shifts in organic and amorphous silicon field-effect transistors. Adv. Mater. 19, 2785–2789 (2007).

    Article  CAS  Google Scholar 

  147. Goldmann, C., Gundlach, D. J. & Batlogg, B. Evidence of water-related discrete trap state formation in pentacene single-crystal field-effect transistors. Appl. Phys. Lett. 88, 063501 (2006).

    Article  CAS  Google Scholar 

  148. Ng, T. N., Marohn, J. A. & Chabinyc, M. L. Comparing the kinetics of bias stress in organic field-effect transistors with different dielectric interfaces. J. Appl. Phys. 100, 084505 (2006).

    Article  CAS  Google Scholar 

  149. Mathijssen, S. G. J. et al. Revealing buried interfaces to understand the origins of threshold voltage shifts in organic field-effect transistors. Adv. Mater. 22, 5105–5109 (2010).

    Article  CAS  Google Scholar 

  150. Gholamrezaie, F. et al. Charge trapping by self-assembled monolayers as the origin of the threshold voltage shift in organic field-effect transistors. Small 8, 241–245 (2012).

    Article  CAS  Google Scholar 

  151. Sandberg, H. G. O., Bäcklund, T. G., Österbacka, R. & Stubb, H. High-performance all-polymer transistor utilizing a hygroscopic insulator. Adv. Mater. 16, 1112–1115 (2004).

    Article  CAS  Google Scholar 

  152. Lee, C. A. et al. Hysteresis mechanism and reduction method in the bottom-contact pentacene thin-film transistors with cross-linked poly(vinyl alcohol) gate insulator. Appl. Phys. Lett. 88, 252102 (2006).

    Article  CAS  Google Scholar 

  153. Sinno, H., Fabiano, S., Crispin, X., Berggren, M. & Engquist, I. Bias stress effect in polyelectrolyte-gated organic field-effect transistors. Appl. Phys. Lett. 102, 113306 (2013).

    Article  CAS  Google Scholar 

  154. Kalb, W. L., Mathis, T., Haas, S., Stassen, A. F. & Batlogg, B. Organic small molecule field-effect transistors with Cytop™ gate dielectric: eliminating gate bias stress effects. Appl. Phys. Lett. 90, 092104 (2007).

    Article  CAS  Google Scholar 

  155. Kobayashi, S. et al. Control of carrier density by self-assembled monolayers in organic field-effect transistors. Nat. Mater. 3, 317–322 (2004).

    Article  CAS  Google Scholar 

  156. Pernstich, K. P. et al. Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 96, 6431–6438 (2004).

    Article  CAS  Google Scholar 

  157. Chung, Y. et al. Controlling electric dipoles in nanodielectrics and its applications for enabling air-stable n-channel organic transistors. Nano Lett. 11, 1161–1165 (2011).

    Article  CAS  Google Scholar 

  158. Boudinet, D. et al. Influence of substrate surface chemistry on the performance of top-gate organic thin-film transistors. J. Am. Chem. Soc. 133, 9968–9971 (2011).

    Article  CAS  Google Scholar 

  159. Baeg, K. J. et al. Remarkable enhancement of hole transport in top-gated N-type polymer field-effect transistors by a high-k dielectric for ambipolar electronic circuits. Adv. Mater. 24, 5433–5439 (2012).

    Article  CAS  Google Scholar 

  160. Huang, C., Katz, H. E. & West, J. E. Solution-processed organic field-effect transistors and unipolar inverters using self-assembled interface dipoles on gate dielectrics. Langmuir 23, 13223–13231 (2007).

    Article  CAS  Google Scholar 

  161. Guo, Y., Yu, G. & Liu, Y. Functional organic field-effect transistors. Adv. Mater. 22, 4427–4447 (2010).

    Article  CAS  Google Scholar 

  162. Zhang, H. et al. Interface engineering of semiconductor/dielectric heterojunctions toward functional organic thin-film transistors. Nano Lett. 11, 4939–4946 (2011).

    Article  CAS  Google Scholar 

  163. Baeg, K.-J. et al. Organic non-volatile memory based on pentacene field-effect transistors using a polymeric gate electret. Adv. Mater. 18, 3179–3183 (2006).

    Article  CAS  Google Scholar 

  164. Baeg, K.-J., Noh, Y.-Y., Ghim, J., Lim, B. & Kim, D.-Y. Polarity effects of polymer gate electrets on non-volatile organic field-effect transistor memory. Adv. Funct. Mater. 18, 3678–3685 (2008).

    Article  CAS  Google Scholar 

  165. Heremans, P. et al. Polymer and organic nonvolatile memory devices. Chem. Mater. 23, 341–358 (2011).

    Article  CAS  Google Scholar 

  166. Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater. 4, 243–248 (2005).

    Article  CAS  Google Scholar 

  167. Naber, R. C. G., Blom, P. W. M., Gelinck, G. H., Marsman, A. W. & de Leeuw, D. M. An organic field-effect transistor with programmable polarity. Adv. Mater. 17, 2692–2695 (2005).

    Article  CAS  Google Scholar 

  168. Fabiano, S. et al. Selective remanent ambipolar charge transport in polymeric field-effect transistors for high-performance logic circuits fabricated in ambient. Adv. Mater. 26, 7438–7443 (2014).

    Article  CAS  Google Scholar 

  169. Fabiano, S., Crispin, X. & Berggren, M. Ferroelectric polarization induces electric double layer bistability in electrolyte-gated field-effect transistors. ACS Appl. Mater. Interfaces 6, 438–442 (2014).

    Article  CAS  Google Scholar 

  170. Fabiano, S. et al. Ferroelectric polarization induces electronic nonlinearity in ion-doped conducting polymers. Sci. Adv. 3, e1700345 (2017).

    Article  CAS  Google Scholar 

  171. Wang, H. et al. A ferroelectric/electrochemical modulated organic synapse for ultraflexible, artificial visual-perception system. Adv. Mater. 30, 1803961 (2018).

    Article  CAS  Google Scholar 

  172. Goffri, S. et al. Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold. Nat. Mater. 5, 950–956 (2006).

    Article  CAS  Google Scholar 

  173. Lamont, C. A. et al. Tuning the viscosity of halogen free bulk heterojunction inks for inkjet printed organic solar cells. Org. Electron. 17, 107–114 (2015).

    Article  CAS  Google Scholar 

  174. Scaccabarozzi, A. D. & Stingelin, N. Semiconducting:insulating polymer blends for optoelectronic applications—a review of recent advances. J. Mater. Chem. A 2, 10818–10824 (2014).

    Article  CAS  Google Scholar 

  175. Arias, A. C., Endicott, F. & Street, R. A. Surface-induced self-encapsulation of polymer thin-film transistors. Adv. Mater. 18, 2900–2904 (2006).

    Article  CAS  Google Scholar 

  176. Hellmann, C. et al. Controlling the interaction of light with polymer semiconductors. Adv. Mater. 25, 4906–4911 (2013).

    Article  CAS  Google Scholar 

  177. del Pozo, F. G. et al. Single crystal-like performance in solution-coated thin-film organic field-effect transistors. Adv. Funct. Mater. 26, 2379–2386 (2016).

    Article  CAS  Google Scholar 

  178. Abbaszadeh, D. et al. Elimination of charge carrier trapping in diluted semiconductors. Nat. Mater. 15, 628–633 (2016).

    Article  CAS  Google Scholar 

  179. Si, L., Massa, M. V., Dalnoki-Veress, K., Brown, H. R. & Jones, R. A. L. Chain entanglement in thin freestanding polymer films. Phys. Rev. Lett. 94, 127801 (2005).

    Article  CAS  Google Scholar 

  180. Shin, K. et al. Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules 40, 6617–6623 (2007).

    Article  CAS  Google Scholar 

  181. Xu, J. et al. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science 355, 59–64 (2017).

    Article  CAS  Google Scholar 

  182. Gumyusenge, A. et al. Semiconducting polymer blends that exhibit stable charge transport at high temperatures. Science 362, 1131–1134 (2018).

    Article  CAS  Google Scholar 

  183. Kumar, A., Baklar, M. A., Scott, K., Kreouzis, T. & Stingelin-Stutzmann, N. Efficient, stable bulk charge transport in crystalline/crystalline semiconductor–insulator blends. Adv. Mater. 21, 4447–4451 (2009).

    Article  CAS  Google Scholar 

  184. Lu, G. et al. Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat. Commun. 4, 1588 (2013).

    Article  CAS  Google Scholar 

  185. Yu, X. et al. High-performance field-effect transistors based on polystyrene-b-poly(3-hexylthiophene) diblock copolymers. ACS Nano 5, 3559–3567 (2011).

    Article  CAS  Google Scholar 

  186. Hamilton, R. et al. High-performance polymer-small molecule blend organic transistors. Adv. Mater. 21, 1166–1171 (2009).

    Article  CAS  Google Scholar 

  187. Sun, Z. et al. PS-b-P3HT copolymers as P3HT/PCBM interfacial compatibilizers for high efficiency photovoltaics. Adv. Mater. 23, 5529–5535 (2011).

    Article  CAS  Google Scholar 

  188. Sauvé, G. & McCullough, R. D. High field-effect mobilities for diblock copolymers of poly(3-hexylthiophene) and poly(methyl acrylate). Adv. Mater. 19, 1822–1825 (2007).

    Article  CAS  Google Scholar 

  189. Diaz, A. F., Kanazawa, K. K. & Gardini, G. P. Electrochemical polymerization of pyrrole. J. Chem. Soc. Chem. Commun. 1979, 635–636 (1979).

    Article  Google Scholar 

  190. Diaz, A. F. & Logan, J. A. Electroactive polyaniline films. J. Electroanal. Chem. Interfacial Electrochem. 111, 111–114 (1980).

    Article  CAS  Google Scholar 

  191. Xuan, Y. et al. Thermoelectric properties of conducting polymers: the case of poly(3-hexylthiophene). Phys. Rev. B 82, 115454 (2010).

    Article  CAS  Google Scholar 

  192. Donnan, F. G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J. Membr. Sci. 100, 45–55 (1995).

    Article  CAS  Google Scholar 

  193. Mafé, S., Manzanares, J. A. & Reiss, H. Donnan phenomena in membranes with charge due to ion adsorption. Effects of the interaction between adsorbed charged groups. J. Chem. Phys. 98, 2325–2331 (1993).

    Article  Google Scholar 

  194. Scotto, J., Florit, M. I. & Posadas, D. The effect of membrane equilibrium on the behaviour of electrochemically active polymers. J. Electroanal. Chem. 774, 42–50 (2016).

    Article  CAS  Google Scholar 

  195. Rubinson, J. F. & Kayinamura, Y. P. Charge transport in conducting polymers: insights from impedance spectroscopy. Chem. Soc. Rev. 38, 3339–3347 (2009).

    Article  CAS  Google Scholar 

  196. Pajkossy, T. & Jurczakowski, R. Electrochemical impedance spectroscopy in interfacial studies. Curr. Opin. Electrochem. 1, 53–58 (2017).

    Article  CAS  Google Scholar 

  197. Stavrinidou, E., Sessolo, M., Winther-Jensen, B., Sanaur, S. & Malliaras, G. G. A physical interpretation of impedance at conducting polymer/electrolyte junctions. AIP Adv. 4, 017127 (2014).

    Article  CAS  Google Scholar 

  198. Johansson, T., Persson, N.-K. & Inganäs, O. Moving redox fronts in conjugated polymers studies from lateral electrochemistry in polythiophenes. J. Electrochem. Soc. 151, E119–E124 (2004).

    Article  CAS  Google Scholar 

  199. Yao, L., Rahmanudin, A., Guijarro, N. & Sivula, K. Organic semiconductor based devices for solar water splitting. Adv. Energy Mater. 8, 1802585 (2018).

    Article  CAS  Google Scholar 

  200. Argun, A. A. et al. Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 16, 4401–4412 (2004).

    Article  CAS  Google Scholar 

  201. Erlandsson, P. G. & Robinson, N. D. Electrolysis-reducing electrodes for electrokinetic devices. Electrophoresis 32, 784–790 (2011).

    Article  CAS  Google Scholar 

  202. Jager, E. W. H., Smela, E., Inganäs, O. & Lundström, I. Polypyrrole micro actuators. Synth. Met. 102, 1309–1310 (1999).

    Article  CAS  Google Scholar 

  203. Mirfakhrai, T., Madden, J. D. W. & Baughman, R. H. Polymer artificial muscles. Mater. Today 10, 30–38 (2007).

    Article  CAS  Google Scholar 

  204. Orata, D. & Buttry, D. A. Determination of ion populations and solvent content as functions of redox state and pH in polyaniline. J. Am. Chem. Soc. 109, 3574–3581 (1987).

    Article  CAS  Google Scholar 

  205. Smela, E. & Gadegaard, N. Volume change in polypyrrole studied by atomic force microscopy. J. Phys. Chem. B 105, 9395–9405 (2001).

    Article  CAS  Google Scholar 

  206. Giridharagopal, R. et al. Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors. Nat. Mater. 16, 737–742 (2017).

    Article  CAS  Google Scholar 

  207. Döbbelin, M. et al. A new approach to hydrophobic and water-resistant poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films using ionic liquids. J. Mater. Chem. 18, 5354–5358 (2008).

    Article  CAS  Google Scholar 

  208. Lin, P., Yan, F. & Chan, H. L. W. Improvement of the tunable wettability property of poly(3-alkylthiophene) films. Langmuir 25, 7465–7470 (2009).

    Article  CAS  Google Scholar 

  209. Darmanin, T. & Guittard, F. Wettability of conducting polymers: From superhydrophilicity to superoleophobicity. Prog. Polym. Sci. 39, 656–682 (2014).

    Article  CAS  Google Scholar 

  210. Robinson, L., Hentzell, A., Robinson, N. D., Isaksson, J. & Berggren, M. Electrochemical wettability switches gate aqueous liquids in microfluidic systems. Lab. Chip 6, 1277–1278 (2006).

    Article  CAS  Google Scholar 

  211. Halldorsson, J. A., Little, S. J., Diamond, D., Spinks, G. & Wallace, G. Controlled transport of droplets using conducting polymers. Langmuir 25, 11137–11141 (2009).

    Article  CAS  Google Scholar 

  212. DeLongchamp, D. M. & Hammond, P. T. High-contrast electrochromism and controllable dissolution of assembled Prussian blue/polymer nanocomposites. Adv. Funct. Mater. 14, 224–232 (2004).

    Article  CAS  Google Scholar 

  213. Persson, K. M. et al. Electronic control over detachment of a self-doped water-soluble conjugated polyelectrolyte. Langmuir 30, 6257–6266 (2014).

    Article  CAS  Google Scholar 

  214. Inzelt, G., Pineri, M., Schultze, J. W. & Vorotyntsev, M. A. Electron and proton conducting polymers: recent developments and prospects. Electrochim. Acta 45, 2403–2421 (2000).

    Article  CAS  Google Scholar 

  215. Volkov, A. V. et al. Understanding the capacitance of PEDOT:PSS. Adv. Funct. Mater. 27, 1700329 (2017).

    Article  CAS  Google Scholar 

  216. Gogotsi, Y. & Penner, R. M. Energy storage in nanomaterials — capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018).

    Article  CAS  Google Scholar 

  217. Chen, G. Z. Supercapacitor and supercapattery as emerging electrochemical energy stores. Int. Mater. Rev. 62, 173–202 (2017).

    Article  CAS  Google Scholar 

  218. Chao, S. & Wrighton, M. S. Solid-state microelectrochemistry: electrical characteristics of a solid-state microelectrochemical transistor based on poly(3-methylthiophene). J. Am. Chem. Soc. 109, 2197–2199 (1987).

    Article  CAS  Google Scholar 

  219. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article  CAS  Google Scholar 

  220. Rivnay, J. et al. High-performance transistors for bioelectronics through tuning of channel thickness. Sci. Adv. 1, e1400251 (2015).

    Article  CAS  Google Scholar 

  221. Giovannitti, A. et al. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl Acad. Sci. USA 113, 12017–12022 (2016).

    Article  CAS  Google Scholar 

  222. Sun, H. et al. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. 30, 1704916 (2018).

    Article  CAS  Google Scholar 

  223. Herlogsson, L., Crispin, X., Tierney, S. & Berggren, M. Polyelectrolyte-gated organic complementary circuits operating at low power and voltage. Adv. Mater. 23, 4684–4689 (2011).

    Article  CAS  Google Scholar 

  224. Larsson, O., Said, E., Berggren, M. & Crispin, X. Insulator polarization mechanisms in polyelectrolyte-gated organic field-effect transistors. Adv. Funct. Mater. 19, 3334–3341 (2009).

    Article  CAS  Google Scholar 

  225. Xie, W. & Frisbie, C. D. Organic electrical double layer transistors based on rubrene single crystals: examining transport at high surface charge densities above 1013 cm−2. J. Phys. Chem. C 115, 14360–14368 (2011).

    Article  CAS  Google Scholar 

  226. Lee, J. et al. Ion gel-gated polymer thin-film transistors: operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J. Phys. Chem. C 113, 8972–8981 (2009).

    Article  CAS  Google Scholar 

  227. Laiho, A., Herlogsson, L., Forchheimer, R., Crispin, X. & Berggren, M. Controlling the dimensionality of charge transport in organic thin-film transistors. Proc. Natl Acad. Sci. USA 108, 15069–15073 (2011).

    Article  CAS  Google Scholar 

  228. Lin, F. & Lonergan, M. C. Gate electrode processes in an electrolyte-gated transistor: non-Faradaically versus Faradaically coupled conductivity modulation of a polyacetylene ionomer. Appl. Phys. Lett. 88, 133507 (2006).

    Article  CAS  Google Scholar 

  229. Tarabella, G. et al. Effect of the gate electrode on the response of organic electrochemical transistors. Appl. Phys. Lett. 97, 123304 (2010).

    Article  CAS  Google Scholar 

  230. Suda, M. et al. N-type superconductivity in an organic Mott insulator induced by light-driven electron-doping. Adv. Mater. 29, 1606833 (2017).

    Article  CAS  Google Scholar 

  231. Williams, R. L. & Doherty, P. J. A preliminary assessment of poly(pyrrole) in nerve guide studies. J. Mater. Sci. Mater. Med. 5, 429–433 (1994).

    Article  CAS  Google Scholar 

  232. Wong, J. Y., Langer, R. & Ingber, D. E. Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proc. Natl Acad. Sci. USA 91, 3201–3204 (1994).

    Article  CAS  Google Scholar 

  233. Cui, X. et al. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends. J. Biomed. Mater. Res. 56, 261–272 (2001).

    Article  CAS  Google Scholar 

  234. Asplund, M. et al. Toxicity evaluation of PEDOT/biomolecular composites intended for neural communication electrodes. Biomed. Mater. 4, 045009 (2009).

    Article  CAS  Google Scholar 

  235. Saltó, C. et al. Control of neural stem cell adhesion and density by an electronic polymer surface switch. Langmuir 24, 14133–14138 (2008).

    Article  CAS  Google Scholar 

  236. Svennersten, K., Bolin, M. H., Jager, E. W. H., Berggren, M. & Richter-Dahlfors, A. Electrochemical modulation of epithelia formation using conducting polymers. Biomaterials 30, 6257–6264 (2009).

    Article  CAS  Google Scholar 

  237. Luo, S. C. et al. Poly(3,4-ethylenedioxythiophene) (PEDOT) nanobiointerfaces: thin, ultrasmooth, and functionalized PEDOT films with in vitro and in vivo biocompatibility. Langmuir 24, 8071–8077 (2008).

    Article  CAS  Google Scholar 

  238. Xie, C. et al. Electroresponsive and cell-affinitive polydopamine/polypyrrole composite microcapsules with a dual-function of on-demand drug delivery and cell stimulation for electrical therapy. NPG Asia Mater. 9, e358 (2017).

    Article  CAS  Google Scholar 

  239. Zhou, L. et al. Soft conducting polymer hydrogels cross-linked and doped by tannic acid for spinal cord injury repair. ACS Nano 12, 10957–10967 (2018).

    Article  CAS  Google Scholar 

  240. Li, Y. & Yu, C. RGD peptide doped polypyrrole film as a biomimetic electrode coating for impedimetric sensing of cell proliferation and cytotoxicity. J. Appl. Biomed. 15, 256–264 (2017).

    Article  Google Scholar 

  241. Du, W. et al. Improving the compatibility of diketopyrrolopyrrole semiconducting polymers for biological interfacing by lysine attachment. Chem. Mater. 30, 6164–6172 (2018).

    Article  CAS  Google Scholar 

  242. Kim, D. H., Abidian, M. & Martin, D. C. Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices. J. Biomed. Mater. Res. A 71, 577–585 (2004).

    Article  CAS  Google Scholar 

  243. Tybrandt, K., Zozoulenko, I. V. & Berggren, M. Chemical potential–electric double layer coupling in conjugated polymer–polyelectrolyte blends. Sci. Adv. 3, eaao3659 (2017).

    Article  CAS  Google Scholar 

  244. Mandal, H. S. et al. Improving the performance of poly(3,4-ethylenedioxythiophene) for brain–machine interface applications. Acta Biomater. 10, 2446–2454 (2014).

    Article  CAS  Google Scholar 

  245. Cui, X. & Martin, D. C. Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays. Sens. Actuators B 89, 92–102 (2003).

    Article  CAS  Google Scholar 

  246. Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C. & Kipke, D. R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3, 59–70 (2006).

    Article  Google Scholar 

  247. Asplund, M., von Holst, H. & Inganäs, O. Composite biomolecule/PEDOT materials for neural electrodes. Biointerphases 3, 83–93 (2008).

    Article  Google Scholar 

  248. Cui, X. T. & Zhou, D. D. Poly (3,4-ethylenedioxythiophene) for chronic neural stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 502–508 (2007).

    Article  Google Scholar 

  249. Collazos-Castro, J. E., Polo, J. L., Hernández-Labrado, G. R., Padial-Cañete, V. & García-Rama, C. Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials 31, 9244–9255 (2010).

    Article  CAS  Google Scholar 

  250. Guo, W. et al. Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene-poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 10, 5086–5095 (2016).

    Article  CAS  Google Scholar 

  251. Schander, A. et al. In-vitro evaluation of the long-term stability of PEDOT:PSS coated microelectrodes for chronic recording and electrical stimulation of neurons. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 6174–6177 (2016).

    CAS  Google Scholar 

  252. Alves-Sampaio, A., García-Rama, C. & Collazos-Castro, J. E. Biofunctionalized PEDOT-coated microfibers for the treatment of spinal cord injury. Biomaterials 89, 98–113 (2016).

    Article  CAS  Google Scholar 

  253. Nilsson, D. et al. Bi-stable and dynamic current modulation in electrochemical organic transistors. Adv. Mater. 14, 51–54 (2002).

    Article  CAS  Google Scholar 

  254. Nilsson, D., Kugler, T., Svensson, P. O. & Berggren, M. An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensors on paper. Sens. Actuators B 86, 193–197 (2002).

    Article  CAS  Google Scholar 

  255. Gentili, D. et al. Integration of organic electrochemical transistors and immuno-affinity membranes for label-free detection of interleukin-6 in the physiological concentration range through antibody-antigen recognition. J. Mater. Chem. B 6, 5400–5406 (2018).

    Article  CAS  Google Scholar 

  256. Tarabella, G. et al. Liposome sensing and monitoring by organic electrochemical transistors integrated in microfluidics. Biochim. Biophys. Acta 1830, 4374–4380 (2013).

    Article  CAS  Google Scholar 

  257. Bolin, M. H. et al. Active control of epithelial cell-density gradients grown along the channel of an organic electrochemical transistor. Adv. Mater. 21, 4379–4382 (2009).

    Article  CAS  Google Scholar 

  258. Ramuz, M., Hama, A., Rivnay, J., Leleux, P. & Owens, R. M. Monitoring of cell layer coverage and differentiation with the organic electrochemical transistor. J. Mater. Chem. B 3, 5971–5977 (2015).

    Article  CAS  Google Scholar 

  259. Jimison, L. H. et al. Measurement of barrier tissue integrity with an organic electrochemical transistor. Adv. Mater. 24, 5919–5923 (2012).

    Article  CAS  Google Scholar 

  260. Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article  CAS  Google Scholar 

  261. Nilsson, D., Robinson, N., Berggren, M. & Forchheimer, R. Electrochemical logic circuits. Adv. Mater. 17, 353–358 (2005).

    Article  CAS  Google Scholar 

  262. Xiao, Y., Cui, X. & Martin, D. C. Electrochemical polymerization and properties of PEDOT/S-EDOT on neural microelectrode arrays. J. Electroanal. Chem. 573, 43–48 (2004).

    CAS  Google Scholar 

  263. Cui, X., Wiler, J., Dzaman, M., Altschuler, R. A. & Martin, D. C. In vivo studies of polypyrrole/peptide coated neural probes. Biomaterials 24, 777–787 (2003).

    Article  CAS  Google Scholar 

  264. Gerwig, R. et al. PEDOT–CNT composite microelectrodes for recording and electrostimulation applications: fabrication, morphology, and electrical properties. Front. Neuroeng. 5, 8 (2012).

    Article  CAS  Google Scholar 

  265. Kang, G., Borgens, R. B. & Cho, Y. Well-ordered porous conductive polypyrrole as a new platform for neural interfaces. Langmuir 27, 6179–6184 (2011).

    Article  CAS  Google Scholar 

  266. Panzer, M. J. & Frisbie, C. D. Polymer electrolyte-gated organic field-effect transistors: low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. J. Am. Chem. Soc. 129, 6599–6607 (2007).

    Article  CAS  Google Scholar 

  267. Kergoat, L. et al. A water-gate organic field-effect transistor. Adv. Mater. 22, 2565–2569 (2010).

    Article  CAS  Google Scholar 

  268. Kergoat, L. et al. DNA detection with a water-gated organic field-effect transistor. Org. Electron. 13, 1–6 (2012).

    Article  CAS  Google Scholar 

  269. Casalini, S., Leonardi, F., Cramer, T. & Biscarini, F. Organic field-effect transistor for label-free dopamine sensing. Org. Electron. 14, 156–163 (2013).

    Article  CAS  Google Scholar 

  270. Magliulo, M. et al. Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer. Adv. Mater. 25, 2090–2094 (2013).

    Article  CAS  Google Scholar 

  271. Schmoltner, K., Kofler, J., Klug, A. & List-Kratochvil, E. J. W. Electrolyte-gated organic field-effect transistor for selective reversible ion detection. Adv. Mater. 25, 6895–6899 (2013).

    Article  CAS  Google Scholar 

  272. Buth, F., Donner, A., Stutzmann, M. & Garrido, J. A. Enzyme-modified electrolyte-gated organic field-effect transistors. Proc. SPIE 8479, 84790M (2012).

    Article  CAS  Google Scholar 

  273. Buth, F., Donner, A., Sachsenhauser, M., Stutzmann, M. & Garrido, J. A. Biofunctional electrolyte-gated organic field-effect transistors. Adv. Mater. 24, 4511–4517 (2012).

    Article  CAS  Google Scholar 

  274. White, S. P., Dorfman, K. D. & Frisbie, C. D. Label-free biosensing platform with low-voltage electrolyte-gated transistors. Anal. Chem. 3, 1861–1866 (2015).

    Article  CAS  Google Scholar 

  275. Dumitru, L. M., Manoli, K., Magliulo, M., Palazzo, G. & Torsi, L. Low-voltage solid electrolyte-gated OFETs for gas sensing applications. Microelectron. J. 45, 1679–1683 (2014).

    Article  CAS  Google Scholar 

  276. Werkmeister, F. X. & Nickel, B. A. Fast detection of blood gases by solution gated organic field effect transistors. Org. Electron. 39, 113–117 (2016).

    Article  CAS  Google Scholar 

  277. Svirskis, D., Travas-Sejdic, J., Rodgers, A. & Garg, S. Electrochemically controlled drug delivery based on intrinsically conducting polymers. J. Control. Release 146, 6–15 (2010).

    Article  CAS  Google Scholar 

  278. Zinger, B. & Miller, L. L. Timed release of chemicals from polypyrrole films. J. Am. Chem. Soc. 106, 6861–6863 (1984).

    Article  CAS  Google Scholar 

  279. Lira, L. M. & Córdoba de Torresi, S. I. Conducting polymer–hydrogel composites for electrochemical release devices: Synthesis and characterization of semi-interpenetrating polyaniline–polyacrylamide networks. Electrochem. Commun. 7, 717–723 (2005).

    Article  CAS  Google Scholar 

  280. Kontturi, K., Murtomäki, L., Pentti, P. & Sundholm, G. Preparation and properties of a pyrrole-based ion-gate membrane as studied by the EQCM. Synth. Met. 92, 179–185 (1998).

    Article  CAS  Google Scholar 

  281. Wadhwa, R., Lagenaur, C. F. & Cui, X. T. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J. Control. Release 110, 531–541 (2006).

    Article  CAS  Google Scholar 

  282. Wang, J. & Jiang, M. Toward genolelectronics: nucleic acid doped conducting polymers. Langmuir 16, 2269–2274 (2000).

    Article  CAS  Google Scholar 

  283. Pernaut, J.-M. & Reynolds, J. R. Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J. Phys. Chem. B 104, 4080–4090 (2000).

    Article  CAS  Google Scholar 

  284. Pei, Q. & Inganäs, O. Electrochemical muscles: bending strips built from conjugated polymers. Synth. Met. 57, 3718–3723 (1993).

    Article  CAS  Google Scholar 

  285. Jager, E. W. H., Smela, E. & Inganäs, O. Microfabricating conjugated polymer actuators. Science 290, 1540–1545 (2000).

    Article  CAS  Google Scholar 

  286. Abidian, M. R. & Martin, D. C. Multifunctional nanobiomaterials for neural interfaces. Adv. Funct. Mater. 19, 573–585 (2009).

    Article  CAS  Google Scholar 

  287. Simon, D. T. et al. Organic electronics for precise delivery of neurotransmitters to modulate mammalian sensory function. Nat. Mater. 8, 742–746 (2009).

    Article  CAS  Google Scholar 

  288. Tybrandt, K. et al. Translating electronic currents to precise acetylcholine-induced neuronal signaling using an organic electrophoretic delivery device. Adv. Mater. 21, 4442–4446 (2009).

    Article  CAS  Google Scholar 

  289. Krische, B. & Zagorska, M. Overoxidation in conducting polymers. Synth. Met. 28, 257–262 (1989).

    Article  Google Scholar 

  290. Kontturi, K., Murtomäki, L. & Manzanares, J. A. Ionic Transport Processes: In Electrochemistry and Membrane Science (Oxford Univ. Press, 2008).

  291. Poxson, D. J. et al. Regulating plant physiology with organic electronics. Proc. Natl Acad. Sci. USA 114, 4597–4602 (2017).

    Article  CAS  Google Scholar 

  292. Arbring Sjöström, T. et al. A decade of iontronic delivery devices. Adv. Mater. Technol. 3, 1700360 (2018).

    Article  CAS  Google Scholar 

  293. Gabrielsson, E. O., Tybrandt, K. & Berggren, M. Ion diode logics for pH control. Lab. Chip 12, 2507–2513 (2012).

    Article  CAS  Google Scholar 

  294. Gabrielsson, E. O., Tybrandt, K. & Berggren, M. Polyphosphonium-based ion bipolar junction transistors. Biomicrofluidics 8, 64116 (2014).

    Article  CAS  Google Scholar 

  295. Tybrandt, K., Larsson, K. C., Richter-Dahlfors, A. & Berggren, M. Ion bipolar junction transistors. Proc. Natl Acad. Sci. USA 107, 9929–9932 (2010).

    Article  CAS  Google Scholar 

  296. Tybrandt, K., Gabrielsson, E. O. & Berggren, M. Toward complementary ionic circuits: the npn ion bipolar junction transistor. J. Am. Chem. Soc. 133, 10141–10145 (2011).

    Article  CAS  Google Scholar 

  297. Tybrandt, K., Forchheimer, R. & Berggren, M. Logic gates based on ion transistors. Nat. Commun. 3, 871 (2012).

    Article  CAS  Google Scholar 

  298. Gabrielsson, E. O., Janson, P., Tybrandt, K., Simon, D. T. & Berggren, M. A four-diode full-wave ionic current rectifier based on bipolar membranes: overcoming the limit of electrode capacity. Adv. Mater. 26, 5143–5147 (2014).

    Article  CAS  Google Scholar 

  299. Jonsson, A., Arbring Sjöström, T., Tybrandt, K., Berggren, M. & Simon, D. T. Chemical delivery array with millisecond neurotransmitter release. Sci. Adv. 2, e1601340 (2016).

    Article  CAS  Google Scholar 

  300. Uguz, I. et al. A microfluidic ion pump for in vivo drug delivery. Adv. Mater. 29, 1701217 (2017).

    Article  CAS  Google Scholar 

  301. Proctor, C. M. et al. Electrophoretic drug delivery for seizure control. Sci. Adv. 4, eaau1291 (2018).

    Article  CAS  Google Scholar 

  302. Bao, Q., Braun, S., Wang, C., Liu, X. & Fahlman, M. Interfaces of (ultra)thin polymer films in organic electronics. Adv. Mater. Interfaces 6, 1800897 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO Mat LiU No. 2009 00971), the Wallenberg Wood Science Center, the Knut and Alice Wallenberg Foundation, the Swedish Foundation for Strategic Research, Vinnova (Digital Cellulose Center and Treesearch) and the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Xavier Crispin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahlman, M., Fabiano, S., Gueskine, V. et al. Interfaces in organic electronics. Nat Rev Mater 4, 627–650 (2019). https://doi.org/10.1038/s41578-019-0127-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0127-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing