Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Unravelling the role of epigenetics in reproductive adaptations to early-life environment

Abstract

Reproductive function adjusts in response to environmental conditions in order to optimize success. In humans, this plasticity includes age of pubertal onset, hormone levels and age at menopause. These reproductive characteristics vary across populations with distinct lifestyles and following specific childhood events, and point to a role for the early-life environment in shaping adult reproductive trajectories. Epigenetic mechanisms respond to external signals, exert long-term effects on gene expression and have been shown in animal and cellular studies to regulate normal reproductive function, strongly implicating their role in these adaptations. Moreover, human cohort data have revealed differential DNA methylation signatures in proxy tissues that are associated with reproductive phenotypic variation, although the cause–effect relationships are difficult to discern, calling for additional complementary approaches to establish functionality. In this Review, we summarize how adult reproductive function can be shaped by childhood events. We discuss why the influence of the childhood environment on adult reproductive function is an important consideration in understanding how reproduction is regulated and necessitates consideration by clinicians treating women with diverse life histories. The resolution of the molecular mechanisms responsible for human reproductive plasticity could also lead to new approaches for intervention by targeting these epigenetic modifications.

Key points

  • Human reproductive function adjusts to changing environmental conditions.

  • Key ‘windows of susceptibility’ during various stages of early development are the most sensitive to events or exposures that can impart long-term reprogramming of adult reproductive function.

  • Epigenetic modifications have a role in regulating the central control of reproduction and pubertal onset and likely mediate much of the adaptive response.

  • Human cohort data are useful for identifying methylation in proxy tissues that correlates with phenotypic variation, but determining cause and effect is challenging because hormones affect the epigenome and epigenetic ageing.

  • Understanding which of the modifications are functional and responsible for the phenotype requires integrating the study of human tissues, animal and cell models and molecular approaches.

  • Characterization and elucidation of these adaptive mechanisms are needed to inform the clinician of alternative reproductive strategies, and the implications for fertility treatment and healthy ageing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Life history theory of environmentally induced reprogramming via the endocrine system.
Fig. 2: Key early-life developmental stages in childhood and windows of susceptibility for reproductive axis reprogramming.
Fig. 3: Sites of epigenetic regulation reported in the central control of reproduction.
Fig. 4: Integrating experimental approaches to understand the role of the epigenome in adaptive reproductive strategies in humans.

Similar content being viewed by others

References

  1. Jasienska, G., Bribiescas, R. G., Furberg, A.-S., Helle, S. & Núñez-de la Mora, A. Human reproduction and health: an evolutionary perspective. Lancet 390, 510–520 (2017).

    PubMed  Google Scholar 

  2. Vitzthum, V. J. The ecology and evolutionary endocrinology of reproduction in the human female. Am. J. Phys. Anthropol. 140, 95–136 (2009).

    PubMed  Google Scholar 

  3. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33, 245–254 (2003).

    CAS  PubMed  Google Scholar 

  4. Sear, R., Sheppard, P. & Coall, D. A. Cross-cultural evidence does not support universal acceleration of puberty in father-absent households. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180124 (2019).

    Google Scholar 

  5. Begum, K. et al. Ethnicity or environment: effects of migration on ovarian reserve among Bangladeshi women in the United Kingdom. Fertil. Steril. 105, 744–754.e1 (2016).

    PubMed  Google Scholar 

  6. Núñez-De La Mora, A., Chatterton, R. T., Choudhury, O. A., Napolitano, D. A. & Bentley, G. R. Childhood conditions influence adult progesterone levels. PLoS Med. 4, 0813–0821 (2007).

    Google Scholar 

  7. Magid, K., Chatterton, R. T., Ahamed, F. U. & Bentley, G. R. Childhood ecology influences salivary testosterone, pubertal age and stature of Bangladeshi UK migrant men. Nat. Ecol. Evol. 2, 1146–1154 (2018).

    PubMed  Google Scholar 

  8. Kuzawa, C. W. & Bragg, J. M. Plasticity in human life history strategy. Curr. Anthropol. 53, S369–S382 (2012).

    Google Scholar 

  9. Safi-Stibler, S. & Gabory, A. Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin. Cell Dev. Biol. 97, 172–180 (2020).

    CAS  PubMed  Google Scholar 

  10. Jazwiec, P. A. & Sloboda, D. M. Nutritional adversity, sex and reproduction: 30 years of DOHaD and what have we learned? J. Endocrinol. 242, T51–T68 (2019).

    PubMed  Google Scholar 

  11. Strzelewicz, A. R. et al. Access to a high resource environment protects against accelerated maturation following early life stress: a translational animal model of high, medium and low security settings. Horm. Behav. 111, 46–59 (2019).

    PubMed  PubMed Central  Google Scholar 

  12. Wang, A., Luan, H. H. & Medzhitov, R. An evolutionary perspective on immunometabolism. Science 363, eaar3932 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ellis, B. J. & Del Giudice, M. Developmental adaptation to stress: an evolutionary perspective. Annu. Rev. Psychol. 70, 111–139 (2019).

    PubMed  Google Scholar 

  14. Haj, M. et al. Mitogen- and stress-activated protein kinase 1 is required for gonadotropin-releasing hormone-mediated activation of gonadotropin α-subunit expression. J. Biol. Chem. 292, 20720–20731 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Rudnizky, S., Khamis, H., Malik, O., Melamed, P. & Kaplan, A. The base pair-scale diffusion of nucleosomes modulates binding of transcription factors. Proc. Natl Acad. Sci. USA 116, 12161–12166 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lomniczi, A. et al. Epigenetic regulation of puberty via Zinc finger protein-mediated transcriptional repression. Nat. Commun. 6, 10195 (2015).

    CAS  PubMed  Google Scholar 

  17. Toro, C. A., Wright, H., Aylwin, C. F., Ojeda, S. R. & Lomniczi, A. Trithorax dependent changes in chromatin landscape at enhancer and promoter regions drive female puberty. Nat. Commun. 9, 57 (2018).

    PubMed  PubMed Central  Google Scholar 

  18. Vazquez, M. J. et al. SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression. Nat. Commun. 9, 4194 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kurian, J. R., Keen, K. L. & Terasawa, E. Epigenetic changes coincide with in vitro primate GnRH neuronal maturation. Endocrinology 151, 5359–5368 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Kurian, J. R. et al. The methylcytosine dioxygenase ten-eleven translocase-2 (tet2) enables elevated GnRH gene expression and maintenance of male reproductive function. Endocrinology 157, 3588–3603 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wijeweera, A. et al. Gonadotropin gene transcription is activated by menin-mediated effects on the chromatin. Biochim. Biophys. Acta 1849, 328–341 (2015).

    CAS  PubMed  Google Scholar 

  22. Lim, S. et al. Distinct mechanisms involving diverse histone deacetylases repress expression of the two gonadotropin-subunit genes in immature gonadotropes, and their actions are overcome by gonadotropin-releasing hormone. Mol. Cell. Biol. 27, 4105–4120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yosefzon, Y. et al. An epigenetic switch repressing Tet1 in gonadotropes activates the reproductive axis. Proc. Natl Acad. Sci. USA 114, 10131–10136 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Feldman, A. et al. Sensitivity of pituitary gonadotropes to hyperglycemia leads to epigenetic aberrations and reduced follicle-stimulating hormone levels. FASEB J. 33, 1020–1032 (2019).

    CAS  PubMed  Google Scholar 

  25. Rudnizky, S. et al. H2A.Z controls the stability and mobility of nucleosomes to regulate expression of the LH genes. Nat. Commun. 7, 12958 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Pnueli, L., Rudnizky, S., Yosefzon, Y. & Melamed, P. RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin α-subunit gene. Proc. Natl Acad. Sci. USA 112, 4369–4374 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Sanchez-Garrido, M. A. et al. Intergenerational influence of paternal obesity on metabolic and reproductive health parameters of the offspring: male-preferential impact and involvement of Kiss1-mediated pathways. Endocrinology 159, 1005–1018 (2018).

    CAS  PubMed  Google Scholar 

  28. Roa, J. et al. Metabolic regulation of female puberty via hypothalamic AMPK–kisspeptin signaling. Proc. Natl Acad. Sci. USA 115, E10758–E10767 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kundakovic, M. Sex-specific epigenetics: implications for environmental studies of brain and behavior. Curr. Environ. Health Rep. 4, 385–391 (2017).

    PubMed  Google Scholar 

  30. McCarthy, M. M. et al. The epigenetics of sex differences in the brain. J. Neurosci. 29, 12815–12823 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Dily, F. & Beato, M. Signaling by steroid hormones in the 3D nuclear space. Int. J. Mol. Sci. 19, E306 (2018).

    PubMed  Google Scholar 

  32. Levine, M. E. et al. Menopause accelerates biological aging. Proc. Natl Acad. Sci. USA 113, 9327–9332 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sehl, M. E., Henry, J. E., Storniolo, A. M., Ganz, P. A. & Horvath, S. DNA methylation age is elevated in breast tissue of healthy women. Breast Cancer Res. Treat. 164, 209–219 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).

    PubMed  PubMed Central  Google Scholar 

  35. Sun, S. S. et al. National estimates of the timing of sexual maturation and racial differences among US children. Pediatrics 110, 911–919 (2002).

    PubMed  Google Scholar 

  36. Gold, E. B. et al. Factors related to age at natural menopause: longitudinal analyses from SWAN. Am. J. Epidemiol. 178, 70–83 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Ellison, P. T. Developmental influences on adult ovarian hormonal function. Am. J. Hum. Biol. 8, 725–734 (1996).

    PubMed  Google Scholar 

  38. Lachelin, G. C. L. & Yen, S. S. C. Hypothalamic chronic anovulation. Am. J. Obstet. Gynecol. 130, 825–831 (1978).

    CAS  PubMed  Google Scholar 

  39. Ellison, P. T. Human ovarian function and reproductive ecology: new hypotheses. Am. Anthropol. 92, 933–952 (1990).

    Google Scholar 

  40. Gadgil, M. & Bossert, W. H. Life historical consequences of natural selection. Am. Nat. 104, 1–24 (1970).

    Google Scholar 

  41. Roff, D. A. Life History Evolution (Sinauer Associates, 2002).

  42. Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).

  43. Parent, A.-S., Franssen, D., Fudvoye, J., Gérard, A. & Bourguignon, J.-P. Developmental variations in environmental influences including endocrine disruptors on pubertal timing and neuroendocrine control: revision of human observations and mechanistic insight from rodents. Front. Neuroendocrinol. 38, 12–36 (2015).

    CAS  PubMed  Google Scholar 

  44. Anderson, S. E. & Must, A. Interpreting the continued decline in the average age at menarche: results from two nationally representative surveys of U.S. girls studied 10 years apart. J. Pediatr. 147, 753–760 (2005).

    PubMed  Google Scholar 

  45. Parent, A.-S. et al. The timing of normal puberty and the age limits of sexual precocity: variations around the world, secular trends, and changes after migration. Endocr. Rev. 24, 668–693 (2003).

    PubMed  Google Scholar 

  46. Herman-Giddens, M. E. et al. Secondary sexual characteristics in boys: data from the Pediatric Research in Office Settings network. Pediatrics 130, e1058–e1068 (2012).

    PubMed  Google Scholar 

  47. Herman-Giddens, M. E. et al. Secondary sexual characteristics and menses in young girls seen in office practice: a study from the Pediatric Research in Office Settings network. Pediatrics 99, 505–512 (1997).

    CAS  PubMed  Google Scholar 

  48. Aksglaede, L., Juul, A., Olsen, L. W. & Sørensen, T. I. A. Age at puberty and the emerging obesity epidemic. PLoS One 4, e8450 (2009).

    PubMed  PubMed Central  Google Scholar 

  49. Sun, Y., Mensah, F. K., Azzopardi, P., Patton, G. C. & Wake, M. Childhood social disadvantage and pubertal timing: a national birth cohort from Australia. Pediatrics 139, e20164099 (2017).

    PubMed  Google Scholar 

  50. Jansen, E. C., Herrán, O. F. & Villamor, E. Trends and correlates of age at menarche in Colombia: results from a nationally representative survey. Econ. Hum. Biol. 19, 138–144 (2015).

    PubMed  Google Scholar 

  51. Villamor, E. & Jansen, E. C. Nutritional determinants of the timing of puberty. Annu. Rev. Public. Health 37, 33–46 (2016).

    PubMed  Google Scholar 

  52. Sørensen, K., Aksglaede, L., Petersen, J. H. & Juul, A. Recent changes in pubertal timing in healthy Danish boys: associations with body mass index. J. Clin. Endocrinol. Metab. 95, 263–270 (2010).

    PubMed  Google Scholar 

  53. Biro, F. M. et al. Onset of breast development in a longitudinal cohort. Pediatrics 132, 1019–1027 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Houghton, L. C. et al. A migrant study of pubertal timing and tempo in British-Bangladeshi girls at varying risk for breast cancer. Breast Cancer Res. 16, 469 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Murphy, L. et al. Life course effects on age at menopause among Bangladeshi sedentees and migrants to the UK. Am. J. Hum. Biol. 25, 83–93 (2013).

    PubMed  Google Scholar 

  56. Proos, L. A. Growth and development of Indian children adopted in Sweden. Indian. J. Med. Res. 130, 646–650 (2009).

    PubMed  Google Scholar 

  57. Ellison, P. T. et al. Population variation in ovarian function. Lancet 342, 433–434 (1993).

    CAS  PubMed  Google Scholar 

  58. Bentley, G. R., Harrigan, A. M. & Ellison, P. T. Dietary composition and ovarian function among Lese horticulturalist women of the Ituri forest, Democratic Republic of Congo. Eur. J. Clin. Nutr. 52, 261–270 (1998).

    CAS  PubMed  Google Scholar 

  59. Marsh, E. E. et al. Estrogen levels are higher across the menstrual cycle in African-American women compared with Caucasian women. J. Clin. Endocrinol. Metab. 96, 3199–3206 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Vitzthum, V. J., Spielvogel, H. & Thornburg, J. Interpopulational differences in progesterone levels during conception and implantation in humans. Proc. Natl Acad. Sci. USA 101, 1443–1448 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pinheiro, S. P., Holmes, M. D., Pollak, M. N., Barbieri, R. L. & Hankinson, S. E. Racial differences in premenopausal endogenous hormones. Cancer Epidemiol. Biomarkers Prev. 14, 2147–2153 (2005).

    CAS  PubMed  Google Scholar 

  62. Reutman, S. R. et al. Urinary reproductive hormone level differences between African American and Caucasian women of reproductive age. Fertil. Steril. 78, 383–391 (2002).

    PubMed  Google Scholar 

  63. Helfrecht, C. et al. DHEAS patterning across childhood in three sub-Saharan populations: associations with age, sex, ethnicity, and cortisol. Am. J. Hum. Biol. 30, e23090 (2018).

    Google Scholar 

  64. Ellison, P. T. & Panter-Brick, C. Salivary testosterone levels among Tamang and Kami males of central Nepal. Hum. Biol. 68, 955–965 (1996).

    CAS  PubMed  Google Scholar 

  65. Núñez-De La Mora, A., Bentley, G. R., Choudhury, O. A., Napolitano, D. A. & Chatterton, R. T. The impact of developmental conditions on adult salivary estradiol levels: why this differs from progesterone? Am. J. Hum. Biol. 20, 2–14 (2008).

    PubMed  Google Scholar 

  66. Goodman, M. J., Estioko-Griffin, A., Griffin, P. B. & Grove, J. S. Menarche, pregnancy, birth spacing and menopause among the Agta women foragers of Cagayan province, Luzon, the Philippines. Ann. Hum. Biol. 12, 169–177 (1985).

    CAS  PubMed  Google Scholar 

  67. Tserotas, K. & Blümel, J. E. Menopause research in Latin America. Climacteric 22, 17–21 (2019).

    CAS  PubMed  Google Scholar 

  68. Henrich, J., Heine, S. J. & Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 33, 61–83 (2010).

    PubMed  Google Scholar 

  69. Webster, G. D., Graber, J. A., Gesselman, A. N., Crosier, B. S. & Schember, T. O. A life history theory of father absence and menarche: a meta-analysis. Evol. Psychol. 12, 273–294 (2014).

    PubMed  Google Scholar 

  70. Sheppard, P., Snopkowski, K. & Sear, R. Father absence and reproduction-related outcomes in Malaysia, a transitional fertility population. Hum. Nat. 25, 213–234 (2014).

    PubMed  PubMed Central  Google Scholar 

  71. Muehlenbein, M. P., Hirschtick, J. L., Bonner, J. Z. & Swartz, A. M. Toward quantifying the usage costs of human immunity: altered metabolic rates and hormone levels during acute immune activation in men. Am. J. Hum. Biol. 22, 546–556 (2010).

    PubMed  Google Scholar 

  72. Urlacher, S. S. et al. Tradeoffs between immune function and childhood growth among Amazonian forager-horticulturalists. Proc. Natl Acad. Sci. USA 115, E3914–E3921 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. DeBoer, M. D. & Denson, L. A. Delays in puberty, growth, and accrual of bone mineral density in pediatric Crohn’s disease: despite temporal changes in disease severity, the need for monitoring remains. J. Pediatr. 163, 17–22 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Ballinger, A. B., Savage, M. O. & Sanderson, I. R. Delayed puberty associated with inflammatory bowel disease. Pediatr. Res. 53, 205–210 (2003).

    PubMed  Google Scholar 

  75. Toufexis, D., Rivarola, M. A., Lara, H. & Viau, V. Stress and the reproductive axis. J. Neuroendocrinol. 26, 573–586 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Joseph, D. & Whirledge, S. Stress and the HPA axis: balancing homeostasis and fertility. Int. J. Mol. Sci. 18, 2224 (2017).

    PubMed Central  Google Scholar 

  77. Acevedo-Rodriguez, A. et al. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J. Neuroendocrinol. 30, e12590 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yehuda, R. et al. Low urinary cortisol excretion in patients with posttraumatic stress disorder. J. Nerv. Ment. Dis. 178, 366–369 (1990).

    CAS  PubMed  Google Scholar 

  79. Yehuda, R. & Seckl, J. Minireview: stress-related psychiatric disorders with low cortisol levels: a metabolic hypothesis. Endocrinology 152, 4496–4503 (2011).

    CAS  PubMed  Google Scholar 

  80. Heim, C., Newport, D. J., Mletzko, T., Miller, A. H. & Nemeroff, C. B. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology 33, 693–710 (2008).

    CAS  PubMed  Google Scholar 

  81. Tilbrook, A. J. & Clarke, I. J. Neuroendocrine mechanisms of innate states of attenuated responsiveness of the hypothalamo-pituitary adrenal axis to stress. Front. Neuroendocrinol. 27, 285–307 (2006).

    CAS  PubMed  Google Scholar 

  82. Magnus, M. C. et al. Childhood psychosocial adversity and female reproductive timing: a cohort study of the ALSPAC mothers. J. Epidemiol. Community Health 72, 34–40 (2018).

    PubMed  Google Scholar 

  83. Sheppard, P., Pearce, M. S. & Sear, R. How does childhood socioeconomic hardship affect reproductive strategy? Pathways of development. Am. J. Hum. Biol. 28, 356–363 (2016).

    PubMed  Google Scholar 

  84. Demakakos, P., Pashayan, N., Chrousos, G., Linara-Demakakou, E. & Mishra, G. D. Childhood experiences of parenting and age at menarche, age at menopause and duration of reproductive lifespan: evidence from the English longitudinal study of ageing. Maturitas 122, 66–72 (2019).

    PubMed  PubMed Central  Google Scholar 

  85. Gaydosh, L., Belsky, D. W., Domingue, B. W., Boardman, J. D. & Harris, K. M. Father absence and accelerated reproductive development in non-hispanic white women in the United States. Demography 55, 1245–1267 (2018).

    PubMed  Google Scholar 

  86. InterLACE Study Team. Variations in reproductive events across life: a pooled analysis of data from 505,147 women across 10 countries. Hum. Reprod. 34, 881–893 (2019).

    PubMed Central  Google Scholar 

  87. Boynton-Jarrett, R. & Harville, E. W. A prospective study of childhood social hardships and age at menarche. Ann. Epidemiol. 22, 731–737 (2012).

    PubMed  PubMed Central  Google Scholar 

  88. Lin, X. et al. Choice of surrogate tissue influences neonatal EWAS findings. BMC Med. 15, 211 (2017).

    PubMed  PubMed Central  Google Scholar 

  89. Hannon, E., Lunnon, K., Schalkwyk, L. & Mill, J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics 10, 1024–1032 (2015).

    PubMed  PubMed Central  Google Scholar 

  90. Gluckman, P. D. & Hanson, M. A. Living with the past: evolution, development, and patterns of disease. Science 305, 1733–1736 (2004).

    CAS  PubMed  Google Scholar 

  91. Gluckman, P. D., Hanson, M. A. & Beedle, A. S. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am. J. Hum. Biol. 19, 1–19 (2007).

    PubMed  Google Scholar 

  92. Goyal, D., Limesand, S. W. & Goyal, R. Epigenetic responses and the developmental origins of health and disease. J. Endocrinol. 242, T105–T119 (2019).

    CAS  PubMed  Google Scholar 

  93. Matthews, S. G. & McGowan, P. O. Developmental programming of the HPA axis and related behaviours: epigenetic mechanisms. J. Endocrinol. 242, T69–T79 (2019).

    CAS  PubMed  Google Scholar 

  94. McGowan, P. O. et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat. Neurosci. 12, 342–348 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Livingstone, D. E. W. et al. Relative adrenal insufficiency in mice deficient in 5α-reductase 1. J. Endocrinol. 222, 257–266 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Camille Melón, L. & Maguire, J. GABAergic regulation of the HPA and HPG axes and the impact of stress on reproductive function. J. Steroid Biochem. Mol. Biol. 160, 196–203 (2016).

    PubMed  Google Scholar 

  97. Brunton, P. J. Programming the brain and behaviour by early-life stress: a focus on neuroactive steroids. J. Neuroendocrinol. 27, 468–480 (2015).

    CAS  PubMed  Google Scholar 

  98. Barker, D. J. The fetal and infant origins of adult disease. BMJ 301, 1111 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Chadio, S. & Kotsampasi, B. The role of early life nutrition in programming of reproductive function. J. Dev. Orig. Health Dis. 5, 2–15 (2014).

    CAS  PubMed  Google Scholar 

  100. Fleming, T. P. et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet 391, 1842–1852 (2018).

    PubMed  PubMed Central  Google Scholar 

  101. Velazquez, M. A., Fleming, T. P. & Watkins, A. J. Periconceptional environment and the developmental origins of disease. J. Endocrinol. 242, T33–T49 (2019).

    CAS  PubMed  Google Scholar 

  102. Nicholas, L. M. et al. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J. 27, 3786–3796 (2013).

    CAS  PubMed  Google Scholar 

  103. Rando, O. J. & Simmons, R. A. I’m eating for two: parental dietary effects on offspring metabolism. Cell 161, 93–105 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Dominguez-Salas, P. et al. Maternal nutrition at conception modulates DNA methylation of human metastable epialleles. Nat. Commun. 5, 3746 (2014).

    CAS  PubMed  Google Scholar 

  105. Ge, Z. et al. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Env. Health Perspect. 122, 159–164 (2014).

    Google Scholar 

  106. Lillycrop, K. et al. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br. J. Nutr. 97, 1064–1073 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Gabory, A. et al. Maternal diets trigger sex-specific divergent trajectories of gene expression and epigenetic systems in mouse placenta. PLoS One 7, e47986 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Gallou-Kabani, C. et al. Sex- and diet-specific changes of imprinted gene expression and DNA methylation in mouse placenta under a high-fat diet. PLoS One 5, e14398 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tobi, E. W. et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nat. Commun. 5, 5592 (2014).

    CAS  PubMed  Google Scholar 

  110. Wang, Y., Dinse, G. E. & Rogan, W. J. Birth weight, early weight gain and pubertal maturation: a longitudinal study. Pediatr. Obes. 7, 101–109 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ong, K. K. et al. Infancy weight gain predicts childhood body fat and age at menarche in girls. J. Clin. Endocrinol. Metab. 94, 1527–1532 (2009).

    CAS  PubMed  Google Scholar 

  112. Salgin, B. et al. Even transient rapid infancy weight gain is associated with higher BMI in young adults and earlier menarche. Int. J. Obes. 39, 939–944 (2015).

    CAS  Google Scholar 

  113. Chernoff, N. et al. Reproductive effects of maternal and pre-weaning undernutrition in rat offspring: age at puberty, onset of female reproductive senescence and intergenerational pup growth and viability. Reprod. Toxicol. 28, 489–494 (2009).

    CAS  PubMed  Google Scholar 

  114. Guzmán, C. et al. Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny. J. Physiol. 572, 97–108 (2006).

    PubMed  PubMed Central  Google Scholar 

  115. Khorram, O., Keen-Rinehart, E., Chuang, T.-D., Ross, M. G. & Desai, M. Maternal undernutrition induces premature reproductive senescence in adult female rat offspring. Fertil. Steril. 103, 291–298.e2 (2015).

    PubMed  Google Scholar 

  116. Yarde, F. et al. Prenatal famine, birthweight, reproductive performance and age at menopause: the Dutch hunger winter families study. Hum. Reprod. 28, 3328–3336 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Bernal, A. B., Vickers, M. H., Hampton, M. B., Poynton, R. A. & Sloboda, D. M. Maternal undernutrition significantly impacts ovarian follicle number and increases ovarian oxidative stress in adult rat offspring. PLoS One 5, e15558 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ibáñez, L., Potau, N., Enriquez, G. & De Zegher, F. Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr. Res. 47, 575–577 (2000).

    PubMed  Google Scholar 

  119. Chan, K. A., Jazwiec, P. A., Gohir, W., Petrik, J. J. & Sloboda, D. M. Maternal nutrient restriction impairs young adult offspring ovarian signaling resulting in reproductive dysfunction and follicle loss. Biol. Reprod. 98, 664–682 (2018).

    PubMed  Google Scholar 

  120. Vikström, J., Hammar, M., Josefsson, A., Bladh, M. & Sydsjö, G. Birth characteristics in a clinical sample of women seeking infertility treatment: a case–control study. BMJ Open. 4, e004197 (2014).

    PubMed  PubMed Central  Google Scholar 

  121. Ibáñez, L. et al. Reduced ovulation rate in adolescent girls born small for gestational age. J. Clin. Endocrinol. Metab. 87, 3391–3393 (2002).

    PubMed  Google Scholar 

  122. Ibáñez, L. et al. Hypersecretion of FSH in infant boys and girls born small for gestational age. J. Clin. Endocrinol. Metab. 87, 1986–1988 (2002).

    PubMed  Google Scholar 

  123. McCarthy, M. M., Herold, K. & Stockman, S. L. Fast, furious and enduring: sensitive versus critical periods in sexual differentiation of the brain. Physiol. Behav. 187, 13–19 (2018).

    CAS  PubMed  Google Scholar 

  124. Styne, D. M. & Grumbach, M. M. Physiology and disorders of puberty. Pediatr. Ann. 41, e73–e80 (2012).

    Google Scholar 

  125. Kuiri-Hänninen, T., Sankilampi, U. & Dunkel, L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm. Res. Paediatr. 82, 73–80 (2014).

    PubMed  Google Scholar 

  126. Witchel, S. F. & Topaloglu, A. K. in Yen & Jaffe’s Reproductive Endocrinology (ed. Strauss, J. & Barbieri, R.) 394–446 (Elsevier, 2018).

  127. Kaplan, S. L., Grumbach, M. M. & Aubert, M. L. The ontogenesis of pituitary hormones and hypothalamic factors in the human fetus: maturation of central nervous system regulation of anterior pituitary function. Recent. Prog. Horm. Res. 32, 161–243 (1976).

    CAS  PubMed  Google Scholar 

  128. Corbier, P. et al. Sex differences in serum luteinizing hormone and testosterone in the human neonate during the first few hours after birth. J. Clin. Endocrinol. Metab. 71, 1344–1348 (1990).

    CAS  PubMed  Google Scholar 

  129. De Zegher, F., Devlieger, H. & Veldhuis, J. D. Pulsatile and sexually dimorphic secretion of luteinizing hormone in the human infant on the day of birth. Pediatr. Res. 32, 605–607 (1992).

    PubMed  Google Scholar 

  130. Clarkson, J. & Herbison, A. E. Hypothalamic control of the male neonatal testosterone surge. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150115 (2016).

    Google Scholar 

  131. Iwasa, T. et al. Effects of intrauterine undernutrition on hypothalamic Kiss1 expression and the timing of puberty in female rats. J. Physiol. 588, 821–829 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Castellano, J. M. et al. Early metabolic programming of puberty onset: impact of changes in postnatal feeding and rearing conditions on the timing of puberty and development of the hypothalamic kisspeptin system. Endocrinology 152, 3396–3408 (2011).

    CAS  PubMed  Google Scholar 

  133. Caron, E., Ciofi, P., Prevot, V. & Bouret, S. G. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J. Neurosci. 32, 11486–11494 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Kiviranta, P. et al. Transient postnatal gonadal activation and growth velocity in infancy. Pediatrics 138, e20153561 (2016).

    PubMed  Google Scholar 

  135. Becker, M. et al. Hormonal ‘minipuberty’ influences the somatic development of boys but not of girls up to the age of 6 years. Clin. Endocrinol. 83, 694–701 (2015).

    CAS  Google Scholar 

  136. Savulescu, D. et al. Gonadotropin-releasing hormone-regulated prohibitin mediates apoptosis of the gonadotrope cells. Mol. Endocrinol. 27, 1856–1870 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Childs, G., Ellison, D., Foster, L. & Ramaley, J. Postnatal maturation of gonadotropes in the male rat pituitary. Endocrinology 109, 1683–1692 (1981).

    CAS  PubMed  Google Scholar 

  138. Alvergne, A., Faurie, C. & Raymond, M. Developmental plasticity of human reproductive development: effects of early family environment in modern-day France. Physiol. Behav. 95, 625–632 (2008).

    CAS  PubMed  Google Scholar 

  139. Culpin, I. et al. Father absence and timing of menarche in adolescent girls from a UK cohort: the mediating role of maternal depression and major financial problems. J. Adolesc. 37, 291–301 (2014).

    PubMed  Google Scholar 

  140. Elias, S. G., van Noord, P. A. H., Peeters, P. H. M., den Tonkelaar, I. & Grobbee, D. E. Caloric restriction reduces age at menopause. Menopause 25, 1232–1237 (2018).

    PubMed  Google Scholar 

  141. Juul, A. & Skakkebæk, N. E. Why do normal children have acromegalic levels of IGF-I during puberty? J. Clin. Endocrinol. Metab. 104, 2770–2776 (2019).

    PubMed  Google Scholar 

  142. Navarro, V. M. & Tena-Sempere, M. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility. Nat. Rev. Endocrinol. 8, 40–53 (2012).

    CAS  Google Scholar 

  143. McCarthy, H. D., Cole, T. J., Fry, T., Jebb, S. A. & Prentice, A. M. Body fat reference curves for children. Int. J. Obes. 30, 598–602 (2006).

    CAS  Google Scholar 

  144. Prough, R. A., Clark, B. J. & Klinge, C. M. Novel mechanisms for DHEA action. J. Mol. Endocrinol. 56, R139–R155 (2016).

    CAS  PubMed  Google Scholar 

  145. Casson, P. R., Lindsay, M. S., Pisarska, M. D., Carson, S. A. & Buster, J. E. Dehydroepiandrosterone supplementation augments ovarian stimulation in poor responders: a case series. Hum. Reprod. 15, 2129–2132 (2000).

    CAS  PubMed  Google Scholar 

  146. Gleicher, N. & Barad, D. H. Dehydroepiandrosterone (DHEA) supplementation in diminished ovarian reserve (DOR). Reprod. Biol. Endocrinol. 9, 67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhu, J., Kusa, T. O. & Chan, Y.-M. Genetics of pubertal timing. Curr. Opin. Pediatr. 30, 1 (2018).

    Google Scholar 

  148. Gajbhiye, R., Fung, J. N. & Montgomery, G. W. Complex genetics of female fertility. NPJ Genom. Med. 3, 29 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Abreu, A. P. et al. Central precocious puberty caused by mutations in the imprinted gene MKRN3. N. Engl. J. Med. 368, 2467–2475 (2013).

    CAS  PubMed  Google Scholar 

  150. De Vries, L., Gat-Yablonski, G., Dror, N., Singer, A. & Phillip, M. A novel MKRN3 missense mutation causing familial precocious puberty. Hum. Reprod. 29, 2838–2843 (2014).

    PubMed  Google Scholar 

  151. Bessa, D. S. et al. High frequency of MKRN3 mutations in male central precocious puberty previously classified as idiopathic. Neuroendocrinology 105, 17–25 (2017).

    CAS  PubMed  Google Scholar 

  152. Macedo, D. B. et al. Central precocious puberty that appears to be sporadic caused by paternally inherited mutations in the imprinted gene makorin ring finger 3. J. Clin. Endocrinol. Metab. 99, E1097–E1103 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Hershko, A., Razin, A. & Shemer, R. Imprinted methylation and its effect on expression of the mouse Zfp127 gene. Gene 234, 323–327 (1999).

    CAS  PubMed  Google Scholar 

  154. Dauber, A. et al. Paternally inherited DLK1 deletion associated with familial central precocious puberty. J. Clin. Endocrinol. Metab. 102, 1557–1567 (2017).

    PubMed  PubMed Central  Google Scholar 

  155. Gomes, L. G. et al. DLK1 is a novel link between reproduction and metabolism. J. Clin. Endocrinol. Metab. 104, 2112–2120 (2019).

    PubMed  Google Scholar 

  156. Perry, J. R. B. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Day, F. R. et al. Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nat. Genet. 49, 834–841 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Howard, S. R. et al. Contributions of function-altering variants in genes implicated in pubertal timing and body mass for self-limited delayed puberty. J. Clin. Endocrinol. Metab. 103, 649–659 (2018).

    PubMed  Google Scholar 

  159. Avendaño, M. S., Vazquez, M. J. & Tena-Sempere, M. Disentangling puberty: novel neuroendocrine pathways and mechanisms for the control of mammalian puberty. Hum. Reprod. Update 23, 737–763 (2017).

    PubMed  Google Scholar 

  160. Elks, C. E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Altarejos, J. Y. et al. The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat. Med. 14, 1112–1117 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Altarejos, J. Y. & Montminy, M. CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat. Rev. Mol. Cell Biol. 12, 141–151 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kim, G. H. et al. Leptin recruits Creb-regulated transcriptional coactivator 1 to improve hyperglycemia in insulin-deficient diabetes. Mol. Metab. 4, 227–236 (2015).

    CAS  PubMed  Google Scholar 

  164. Pnueli, L., Luo, M., Wang, S., Naor, Z. & Melamed, P. Calcineurin mediates the gonadotropin-releasing hormone effect on expression of both subunits of the follicle-stimulating hormone through distinct mechanisms. Mol. Cell. Biol. 31, 5023–5036 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Jeong, H. et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med. 18, 159–165 (2012).

    CAS  Google Scholar 

  166. Castellano, J. M. & Tena-Sempere, M. Metabolic control of female puberty: potential therapeutic targets. Expert Opin. Ther. Targets 20, 1181–1193 (2016).

    CAS  PubMed  Google Scholar 

  167. van der Knaap, J. A. & Verrijzer, C. P. Undercover: gene control by metabolites and metabolic enzymes. Genes Dev. 30, 2345–2369 (2016).

    PubMed  PubMed Central  Google Scholar 

  168. Nieborak, A. & Schneider, R. Metabolic intermediates — cellular messengers talking to chromatin modifiers. Mol. Metab. 14, 39–52 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Li, X., Egervari, G., Wang, Y., Berger, S. L. & Lu, Z. Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat. Rev. Mol. Cell Biol. 19, 563–578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016).

    CAS  PubMed  Google Scholar 

  171. Abreu, A. P. & Kaiser, U. B. Pubertal development and regulation. Lancet Diabetes Endocrinol. 4, 254–264 (2016).

    PubMed  PubMed Central  Google Scholar 

  172. Plant, T. M. Neuroendocrine control of the onset of puberty. Front. Neuroendocrinol. 38, 73–88 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Lomniczi, A. et al. Epigenetic control of female puberty. Nat. Neurosci. 16, 281–289 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Laukka, T. et al. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291, 4256–4265 (2016).

    CAS  PubMed  Google Scholar 

  175. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Kelsey, M. M. et al. Menstrual dysfunction in girls from the treatment options for type 2 diabetes in adolescents and youth (TODAY) study. J. Clin. Endocrinol. Metab. 103, 2309–2318 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. Struhl, K. & Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 267–273 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Rudnizky, S. et al. Nucleosome mobility and the regulation of gene expression: insights from single-molecule studies. Protein Sci. 26, 1266–1277 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Fierz, B. & Poirier, M. G. Biophysics of chromatin dynamics. Annu. Rev. Biophys. 48, 321–345 (2019).

    CAS  PubMed  Google Scholar 

  180. Zhou, K., Gaullier, G. & Luger, K. Nucleosome structure and dynamics are coming of age. Nat. Struct. Mol. Biol. 26, 3–13 (2019).

    CAS  PubMed  Google Scholar 

  181. Melamed, P., Yosefzon, Y., Rudnizky, S. & Pnueli, L. Transcriptional enhancers: transcription, function and flexibility. Transcription 7, 26–31 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    CAS  PubMed  Google Scholar 

  183. Melamed, P. et al. Multifaceted targeting of the chromatin mediates gonadotropin-releasing hormone effects on gene expression in the gonadotrope. Front. Endocrinol. 9, 58 (2018).

    Google Scholar 

  184. Melamed, P. Histone deacetylases and repression of the gonadotropin genes. Trends Endocrinol. Metab. 19, 25–31 (2008).

    CAS  PubMed  Google Scholar 

  185. Oride, A., Kanasaki, H., Mijiddorj, T., Sukhbaatar, U. & Miyazaki, K. Trichostatin A specifically stimulates gonadotropin FSHβ gene expression in gonadotroph LβT2 cells. Endocr. J. 61, 335–342 (2014).

    CAS  PubMed  Google Scholar 

  186. Mijiddorj, T. et al. Retinoic acid and retinaldehyde dehydrogenase are not involved in the specific induction of the follicle-stimulating hormone β subunit by trichostatin A, a selective inhibitor of histone deacetylase. Gen. Comp. Endocrinol. 242, 59–65 (2017).

    CAS  PubMed  Google Scholar 

  187. Lappalainen, T. & Greally, J. M. Associating cellular epigenetic models with human phenotypes. Nat. Rev. Genet. 18, 441–451 (2017).

    CAS  PubMed  Google Scholar 

  188. Almstrup, K. et al. Pubertal development in healthy children is mirrored by DNA methylation patterns in peripheral blood. Sci. Rep. 6, 28657 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Thompson, E. E. et al. Global DNA methylation changes spanning puberty are near predicted estrogen-responsive genes and enriched for genes involved in endocrine and immune processes. Clin. Epigenetics 10, 62 (2018).

    PubMed  PubMed Central  Google Scholar 

  190. Bessa, D. S. et al. Methylome profiling of healthy and central precocious puberty girls. Clin. Epigenetics 10, 146 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Issa, J.-P. Aging and epigenetic drift: a vicious cycle. J. Clin. Invest. 124, 24–29 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Hernando-Herraez, I. et al. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat. Commun. 10, 4361 (2019).

    PubMed  PubMed Central  Google Scholar 

  193. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    CAS  PubMed  Google Scholar 

  194. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    PubMed  PubMed Central  Google Scholar 

  195. Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy human aging. Aging Cell 14, 924–932 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Quach, A. et al. Epigenetic clock analysis of diet, exercise, education, and lifestyle factors. Aging 9, 419–446 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Binder, A. M. et al. Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls. Epigenetics 13, 85–94 (2018).

    PubMed  PubMed Central  Google Scholar 

  200. Ryan, C. P. et al. Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Sci. Rep. 8, 11100 (2018).

    PubMed  PubMed Central  Google Scholar 

  201. Huang, Y.-T. et al. Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and blood. Epigenetics 11, 227–236 (2016).

    PubMed  PubMed Central  Google Scholar 

  202. Braun, P. R. et al. Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl. Psychiatry 9, 47 (2019).

    PubMed  PubMed Central  Google Scholar 

  203. Wen, S. et al. Functional characterization of genetically labeled gonadotropes. Endocrinology 149, 2701–2711 (2008).

    CAS  PubMed  Google Scholar 

  204. Bellofiore, N. et al. First evidence of a menstruating rodent: the spiny mouse (Acomys cahirinus). Am. J. Obstet. Gynecol. 216, 40.e1–40.e11 (2017).

    Google Scholar 

  205. Greaves, R. F. et al. A tale of two steroids: the importance of the androgens DHEA and DHEAS for early neurodevelopment. J. Steroid Biochem. Mol. Biol. 188, 77–85 (2019).

    CAS  PubMed  Google Scholar 

  206. Ezran, C. et al. The mouse lemur, a genetic model organism for primate biology, behavior, and health. Genetics 206, 651–664 (2017).

    PubMed  PubMed Central  Google Scholar 

  207. Roberts, L. Small, furry and powerful: are mouse lemurs the next big thing in genetics? Nature 570, 151–154 (2019).

    CAS  PubMed  Google Scholar 

  208. Pulecio, J., Verma, N., Mejía-Ramírez, E., Huangfu, D. & Raya, A. CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21, 431–447 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Holtzman, L. & Gersbach, C. A. Editing the epigenome: reshaping the genomic landscape. Annu. Rev. Genomics Hum. Genet. 19, 43–71 (2018).

    CAS  PubMed  Google Scholar 

  210. Gomez, J. A., Beitnere, U. & Segal, D. J. Live-animal epigenome editing: convergence of novel techniques. Trends Genet. 35, 527–541 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Hall, M. A. et al. High-resolution dynamic mapping of histone-DNA interactions in a nucleosome. Nat. Struct. Mol. Biol. 16, 124–129 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Rudnizky, S. et al. Single-molecule DNA unzipping reveals asymmetric modulation of a transcription factor by its binding site sequence and context. Nucleic Acids Res. 46, 1513–1524 (2018).

    CAS  PubMed  Google Scholar 

  213. Johnson, P. L., Wood, J. W. & Weinstein, M. Female fecundity in highland Papua New Guinea. Soc. Biol. 37, 26–43 (1990).

    CAS  PubMed  Google Scholar 

  214. Nepomnaschy, P. A., Welch, K., McConnell, D., Strassmann, B. I. & England, B. G. Stress and female reproductive function: a study of daily variations in cortisol, gonadotrophins, and gonadal steroids in a rural Mayan population. Am. J. Hum. Biol. 16, 523–532 (2004).

    PubMed  Google Scholar 

  215. Murphy, S. A., Bentley, G. R. & O’Hanesian, M. A. An analysis for menstrual data with time-varying covariates. Stat. Med. 14, 1843–1857 (1995).

    CAS  PubMed  Google Scholar 

  216. Jasieńska, G. & Ellison, P. T. Physical work causes suppression of ovarian function in women. Proc. R. Soc. London Ser. B Biol. Sci. 265, 1847–1851 (1998).

    Google Scholar 

  217. Panter-Brick, C., Lotstein, D. S. & Ellison, P. T. Seasonality of reproductive function and weight loss in rural Nepali women. Hum. Reprod. 8, 684–690 (1993).

    CAS  PubMed  Google Scholar 

  218. McCarthy, M. M., Nugent, B. M. & Lenz, K. M. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat. Rev. Neurosci. 18, 471–484 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Melamed, P., Yosefzon, Y., David, C., Tsukerman, A. & Pnueli, L. Tet enzymes, variants, and differential effects on function. Front. Cell Dev. Biol. 6, 22 (2018).

    PubMed  PubMed Central  Google Scholar 

  220. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Weber, C. M. & Henikoff, S. Histone variants: dynamic punctuation in transcription. Genes. Dev. 28, 672–682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Buschbeck, M. & Hake, S. B. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat. Rev. Mol. Cell Biol. 18, 299–314 (2017).

    CAS  PubMed  Google Scholar 

  223. Tessarz, P. & Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 15, 703–708 (2014).

    CAS  PubMed  Google Scholar 

  224. Zheng, H. & Xie, W. The role of 3D genome organization in development and cell differentiation. Nat. Rev. Mol. Cell Biol. 20, 535–550 (2019).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from BBSRC/ESRC (grant ES/N000471/1 to G.R.B., R.S. and P.M.) and Israel Science Foundation (grants 1850/17 to P.M. and 1782/17 to A.K.).

Author information

Authors and Affiliations

Authors

Contributions

B.B.-S., S.R., L.P., G.R.B., R.S. and A.K. researched data for the article and contributed to discussion of the content. P.M. wrote the article with considerable input from G.R.B., R.S. and A.K. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Philippa Melamed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Endocrinology thanks P. Gluckman and the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bar-Sadeh, B., Rudnizky, S., Pnueli, L. et al. Unravelling the role of epigenetics in reproductive adaptations to early-life environment. Nat Rev Endocrinol 16, 519–533 (2020). https://doi.org/10.1038/s41574-020-0370-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-020-0370-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing