Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Advancing mechanochemical synthesis by combining milling with different energy sources

Abstract

Owing to its efficiency and unique reactivity, mechanochemical processing of bulk solids has developed into a powerful tool for the synthesis and transformation of various classes of materials. Nevertheless, mechanochemistry is primarily based on simple techniques, such as milling in comminution devices. Recently, mechanochemical reactivity has started being combined with other energy sources commonly used in solution-based chemistry. Milling under controlled temperature, light irradiation, sound agitation or electrical impulses in newly developed experimental setups has led to reactions not achievable by conventional mechanochemical processing. This Perspective describes these unique reactivities and the advances in equipment tailored to synthetic mechanochemistry. These techniques — thermo-mechanochemistry, sono-mechanochemistry, electro-mechanochemistry and photo-mechanochemistry — represent a notable advance in modern mechanochemistry and herald a new level of solid-state reactivity: mechanochemistry 2.0.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of standard modes of mechanical energy input.
Fig. 2: Different thermochemical effects in mechanochemistry.
Fig. 3: Different experimental setups for controlling the temperature of a milled reaction mixture.
Fig. 4: Acoustic cavitation and different sono-mechanochemical setups.
Fig. 5: Different photo-mechanochemical setups and example reactions.
Fig. 6: Electro-mechanochemical setups.

Similar content being viewed by others

References

  1. James, S. L. et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).

    Article  CAS  Google Scholar 

  2. Do, J.-L. & Friščić, T. Mechanochemistry: a force of synthesis. ACS Cent. Sci. 3, 13–19 (2017).

    Article  CAS  Google Scholar 

  3. Friščić, T., Mottillo, C. & Titi, H. M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 59, 1018–1029 (2020).

    Article  Google Scholar 

  4. Michalchuk, A. A. L., Boldyreva, E. V., Belenguer, A. M., Emmerling, F. & Boldyrev, V. V. Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? Front. Chem. 9, 685789 (2021).

    Article  CAS  Google Scholar 

  5. Boldyrev, V. V. & Tkáčová, K. Mechanochemistry of solids: past, present, and prospects. J. Mater. Synth. Process. 8, 121–132 (2000).

    Article  CAS  Google Scholar 

  6. Braga, D., Maini, L. & Grepioni, F. Mechanochemical preparation of co-crystals. Chem. Soc. Rev. 42, 7638–7648 (2013).

    Article  CAS  Google Scholar 

  7. Solares-Briones, M. et al. Mechanochemistry: a green approach in the preparation of pharmaceutical cocrystals. Pharmaceutics 13, 790–839 (2021).

    Article  CAS  Google Scholar 

  8. Wang, G.-W. Mechanochemical organic synthesis. Chem. Soc. Rev. 42, 7668–7700 (2013).

    Article  CAS  Google Scholar 

  9. Andersen, J. & Mack, J. Mechanochemistry and organic synthesis: from mystical to practical. Green Chem. 20, 1435–1443 (2018).

    Article  CAS  Google Scholar 

  10. Friščić, T. in Ball Milling Towards Green Synthesis: Applications, Projects, Challenges (eds Stolle, A. & Ranu, B.) 151–189 (Royal Society of Chemistry, 2015).

  11. Stolar, T. & Užarević, K. Mechanochemistry: an efficient and versatile toolbox for synthesis, transformation, and functionalization of porous metal–organic frameworks. CrystEngComm 22, 4511–4525 (2020).

    Article  CAS  Google Scholar 

  12. Peh, S. B., Wang, Y. & Zhao, D. Scalable and sustainable synthesis of advanced porous materials. ACS Sustain. Chem. Eng. 7, 3647–3670 (2019).

    Article  CAS  Google Scholar 

  13. Bennett, T. D. et al. Facile mechanosynthesis of amorphous zeolitic imidazolate frameworks. J. Am. Chem. Soc. 133, 14546–14549 (2011).

    Article  CAS  Google Scholar 

  14. Stolar, T. et al. Scalable mechanochemical amorphization of bimetallic Cu–Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Appl. Mater. Interfaces 13, 3070–3077 (2021).

    Article  CAS  Google Scholar 

  15. Willart, J. F. & Descamps, M. Solid state amorphization of pharmaceuticals. Mol. Pharm. 5, 905–920 (2008).

    Article  CAS  Google Scholar 

  16. Boldyreva, E. Mechanochemistry of inorganic and organic systems: what is similar, what is different? Chem. Soc. Rev. 42, 7719–7738 (2013).

    Article  CAS  Google Scholar 

  17. Takacs, L. The historical development of mechanochemistry. Chem. Soc. Rev. 42, 7649–7659 (2013).

    Article  CAS  Google Scholar 

  18. Ardila‐Fierro, K. J. & Hernández, J. G. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. ChemSusChem 14, 2145–2162 (2021).

    Article  Google Scholar 

  19. Colacino, E., Delogu, F. & Hanusa, T. Advances in mechanochemistry. ACS Sustain. Chem. Eng. 9, 10662–10663 (2021).

    Article  CAS  Google Scholar 

  20. Howard, J., Cao, Q. & Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. 9, 3080–3094 (2018).

    Article  CAS  Google Scholar 

  21. Braga, D. et al. Solvent effect in a “solvent free” reaction. CrystEngComm 9, 879–881 (2007).

    Article  CAS  Google Scholar 

  22. Martinez, V. et al. Tunable fulleretic sodalite MOFs: highly efficient and controllable entrapment of C60 fullerene via mechanochemistry. Chem. Mater. 32, 10628–10640 (2020).

    Article  CAS  Google Scholar 

  23. Pickhardt, W., Grätz, S. & Borchardt, L. Direct mechanocatalysis: using milling balls as catalysts. Chemistry 26, 12903–12911 (2020).

    Article  CAS  Google Scholar 

  24. Lukin, S. et al. Mechanochemical carbon–carbon bond formation that proceeds via a cocrystal intermediate. Chem. Commun. 54, 13216–13219 (2018).

    Article  CAS  Google Scholar 

  25. Štrukil, V., Gracin, D., Magdysyuk, O. V., Dinnebier, R. E. & Friščić, T. Trapping reactive intermediates by mechanochemistry: elusive aryl N-thiocarbamoylbenzotriazoles as bench-stable reagents. Angew. Chem. Int. Ed. 54, 8440–8443 (2015).

    Article  Google Scholar 

  26. Katsenis, A. D. et al. In situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework. Nat. Commun. 6, 6662 (2015).

    Article  CAS  Google Scholar 

  27. Ayoub, G. et al. Rational synthesis of mixed-metal microporous metal–organic frameworks with controlled composition using mechanochemistry. Chem. Mater. 31, 5494–5501 (2019).

    Article  CAS  Google Scholar 

  28. Bolm, C. & Hernández, J. G. Mechanochemistry of gaseous reactants. Angew. Chem. Int. Ed. 58, 3285–3299 (2019).

    Article  CAS  Google Scholar 

  29. Eckert, R., Felderhoff, M. & Schüth, F. Preferential carbon monoxide oxidation over copper-based catalysts under in situ ball milling. Angew. Chem. Int. Ed. 56, 2445–2448 (2017).

    Article  CAS  Google Scholar 

  30. Do, J.-L. & Friščić, T. Chemistry 2.0: developing a new, solvent-free system of chemical synthesis based on mechanochemistry. Synlett 28, 2066–2092 (2017).

    Article  CAS  Google Scholar 

  31. Gomollón-Bel, F. Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable. Chem. Int. 41, 12–17 (2019).

    Article  Google Scholar 

  32. Friščić, T., Trask, A. V., Jones, W. & Motherwell, W. D. S. Screening for inclusion compounds and systematic construction of three-component solids by liquid-assisted grinding. Angew. Chem. Int. Ed. 45, 7546–7550 (2006).

    Article  Google Scholar 

  33. Shan, N., Toda, F. & Jones, W. Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem. Commun. 2, 2372–2373 (2002).

    Article  Google Scholar 

  34. Friščić, T., Childs, S. L., Rizvi, S. A. A. & Jones, W. The role of solvent in mechanochemical and sonochemical cocrystal formation: a solubility-based approach for predicting cocrystallisation outcome. CrystEngComm 11, 418–426 (2008).

    Article  Google Scholar 

  35. Cao, Q., Howard, J. L., Crawford, D. E., James, S. L. & Browne, D. L. Translating solid state organic synthesis from a mixer mill to a continuous twin screw extruder. Green Chem. 20, 4443–4447 (2018).

    Article  CAS  Google Scholar 

  36. Stolar, T. et al. Control of pharmaceutical cocrystal polymorphism on various scales by mechanochemistry: transfer from the laboratory batch to the large-scale extrusion processing. ACS Sustain. Chem. Eng. 7, 7102–7110 (2019).

    Article  CAS  Google Scholar 

  37. Hernández, J. G. C–H bond functionalization by mechanochemistry. Chemistry 23, 17157–17165 (2017).

    Article  Google Scholar 

  38. Bowmaker, G. A. Solvent-assisted mechanochemistry. Chem. Commun. 49, 334–348 (2013).

    Article  CAS  Google Scholar 

  39. Lapshin, O. V., Boldyreva, E. V. & Boldyrev, V. V. Role of mixing and milling in mechanochemical synthesis (Review). Russ. J. Inorg. Chem. 66, 433–453 (2021).

    Article  CAS  Google Scholar 

  40. Delogu, F. & Takacs, L. Information on the mechanism of mechanochemical reaction from detailed studies of the reaction kinetics. J. Mater. Sci. 53, 13331–13342 (2018).

    Article  CAS  Google Scholar 

  41. Horie, K. et al. Definitions of terms relating to reactions of polymers and to functional polymeric materials (IUPAC Recommendations 2003). Pure Appl. Chem. 76, 889–906 (2004).

    Article  CAS  Google Scholar 

  42. Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering Ch. 1 (Springer, 2008).

  43. Haley, R. A., Mack, J. & Guan, H. 2-in-1: catalyst and reaction medium. Inorg. Chem. Front. 4, 52–55 (2017).

    Article  CAS  Google Scholar 

  44. Haley, R. A., Zellner, A. R., Krause, J. A., Guan, H. & Mack, J. Nickel catalysis in a high speed ball mill: a recyclable mechanochemical method for producing substituted cyclooctatetraene compounds. ACS Sustain. Chem. Eng. 4, 2464–2469 (2016).

    Article  CAS  Google Scholar 

  45. Tireli, M. et al. Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole. Beilstein J. Org. Chem. 13, 2352–2363 (2017).

    Article  CAS  Google Scholar 

  46. Vogt, C. G. et al. Direct mechanocatalysis: palladium as milling media and catalyst in the mechanochemical Suzuki polymerization. Angew. Chem. Int. Ed. 58, 18942–18947 (2019).

    Article  CAS  Google Scholar 

  47. Fulmer, D. A., Shearouse, W. C., Medonza, S. T. & Mack, J. Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem. 11, 1821–1825 (2009).

    Article  CAS  Google Scholar 

  48. Friščić, T. et al. Ion‐ and liquid‐assisted grinding: improved mechanochemical synthesis of metal–organic frameworks reveals salt inclusion and anion templating. Angew. Chem. Int. Ed. 49, 712–715 (2009).

    Article  Google Scholar 

  49. Hasa, D., Schneider Rauber, G., Voinovich, D. & Jones, W. Cocrystal formation through mechanochemistry: from neat and liquid-assisted grinding to polymer-assisted grinding. Angew. Chem. Int. Ed. 54, 7371–7375 (2015).

    Article  CAS  Google Scholar 

  50. Brekalo, I. et al. Use of a “shoe-last” solid-state template in the mechanochemical synthesis of high-porosity RHO-zinc imidazolate. J. Am. Chem. Soc. 140, 10104–10108 (2018).

    Article  CAS  Google Scholar 

  51. Arhangelskis, M. et al. Mechanochemical reactivity inhibited, prohibited and reversed by liquid additives: examples from crystal-form screens. Chem. Sci. 12, 3264–3269 (2021).

    Article  CAS  Google Scholar 

  52. Belenguer, A. M., Lampronti, G. I., Wales, D. J. & Sanders, J. K. M. Direct observation of intermediates in a thermodynamically controlled solid-state dynamic covalent reaction. J. Am. Chem. Soc. 136, 16156–16166 (2014).

    Article  CAS  Google Scholar 

  53. Tireli, M. et al. Mechanochemical reactions studied by in situ Raman spectroscopy: base catalysis in liquid-assisted grinding. Chem. Commun. 51, 8058–8061 (2015).

    Article  CAS  Google Scholar 

  54. Brekalo, I. et al. Scale-up of agrochemical urea-gypsum cocrystal synthesis using thermally controlled mechanochemistry. ACS Sustain. Chem. Eng. 10, 6743–6754 (2022).

    Article  CAS  Google Scholar 

  55. Užarević, K., Halasz, I. & Friščić, T. Real-time and in situ monitoring of mechanochemical reactions: a new playground for all chemists. J. Phys. Chem. Lett. 6, 4129–4140 (2015).

    Article  Google Scholar 

  56. Friščić, T. et al. Real-time and in situ monitoring of mechanochemical milling reactions. Nat. Chem. 5, 66–73 (2013).

    Article  Google Scholar 

  57. de Oliveira, P. F. M. et al. Tandem X-ray absorption spectroscopy and scattering for in situ time-resolved monitoring of gold nanoparticle mechanosynthesis. Chem. Commun. 56, 10329–10332 (2020).

    Article  Google Scholar 

  58. Gracin, D., Štrukil, V., Friščić, T., Halasz, I. & Užarević, K. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy. Angew. Chem. Int. Ed. 53, 6193–6197 (2014).

    Article  CAS  Google Scholar 

  59. Lukin, S., Užarević, K. & Halasz, I. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nat. Protoc. 16, 3492–3521 (2021).

    Article  CAS  Google Scholar 

  60. Pladevall, B. S., de Aguirre, A. & Maseras, F. Understanding ball milling mechanochemical processes with DFT calculations and microkinetic modeling. ChemSusChem 14, 2763–2768 (2021).

    Article  CAS  Google Scholar 

  61. Delogu, F. Molecular dynamics of collisions between rough surfaces. Phys. Rev. B 82, 205415 (2010).

    Article  Google Scholar 

  62. Chen, Z., Vazirisereshk, M. R., Khajeh, A., Martini, A. & Kim, S. H. Effect of atomic corrugation on adhesion and friction: a model study with graphene step edges. J. Phys. Chem. Lett. 10, 6455–6461 (2019).

    Article  CAS  Google Scholar 

  63. Ferguson, M. et al. Insights into mechanochemical reactions at the molecular level: simulated indentations of aspirin and meloxicam crystals. Chem. Sci. 10, 2924–2929 (2019).

    Article  CAS  Google Scholar 

  64. Ewers, B. W. & Batteas, J. D. Utilizing atomistic simulations to map pressure distributions and contact areas in molecular adlayers within nanoscale surface-asperity junctions: a demonstration with octadecylsilane-functionalized silica interfaces. Langmuir 30, 11897–11905 (2014).

    Article  CAS  Google Scholar 

  65. Butyagin, P. Y. The nature of the mechanical degradation of polymethylmethacrylate. Polym. Sci. USSR 9, 149–158 (1967).

    Article  Google Scholar 

  66. Užarević, K. et al. Enthalpy vs. friction: heat flow modelling of unexpected temperature profiles in mechanochemistry of metal–organic frameworks. Chem. Sci. 9, 2525–2532 (2018).

    Article  Google Scholar 

  67. Friščić, T. & Jones, W. Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst. Growth Des. 9, 1621–1637 (2009).

    Article  Google Scholar 

  68. Bowden, F. P., Stone, M. A. & Tudor, G. K. Hot spots on rubbing surfaces and the detonation of explosives by friction. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 188, 329–349 (1947).

    CAS  Google Scholar 

  69. Fox, P. G. Mechanically initiated chemical reactions in solids. J. Mater. Sci. 10, 340–360 (1975).

    Article  CAS  Google Scholar 

  70. Thiessen, P. A., Meyer K. & Heinicke, G. Grundlagen der Tribochemie Ch. 1 (Akademie Verlag, 1967).

  71. Užarević, K. et al. Exploring the effect of temperature on a mechanochemical reaction by in situ synchrotron powder X-ray diffraction. Cryst. Growth Des. 16, 2342–2347 (2016).

    Article  Google Scholar 

  72. Lea, M. C. Disruption of the silver haloid molecule by mechanical force. Am. J. Sci. s3-43, 527–531 (1892).

    Article  Google Scholar 

  73. Lea, M. C. On endothermic reactions effected by mechanical force. Am. J. Sci. s3-46, 241–244 (1893).

    Article  Google Scholar 

  74. Lea, M. C. Transformations of mechanical into chemical energy; part III, action of shearing stress continued. Am. J. Sci. s3-47, 377–382 (1894).

    Article  Google Scholar 

  75. Boldyrev, V. V., Avakumow, E. G., Strugowa, L. I., Harenz, H. & Heinicke, G. Zur Tribochemischen Zersetzung von Alkali‐Bromaten und‐Nitraten. Z. Anorg. Allg. Chem. 393, 152–158 (1972).

    Article  CAS  Google Scholar 

  76. Milanović, I. et al. Mechanochemical synthesis and thermal dehydrogenation of novel calcium-containing bimetallic amidoboranes. ACS Sustain. Chem. Eng. 9, 2089–2099 (2021).

    Article  Google Scholar 

  77. Takacs, L. Self-sustaining reactions as a tool to study mechanochemical activation. Faraday Discuss. 170, 251–265 (2014).

    Article  CAS  Google Scholar 

  78. Macfadyen, A. On the influence of the prolonged action of the temperature of liquid air on micro-organisms, and on the effect of mechanical trituration at the temperature of liquid air on photogenic bacteria. Proc. R. Soc. Lond. 71, 76–77 (1902).

    CAS  Google Scholar 

  79. Cells, O. & Barnard, M. On a method of disintegrating bacterial and other organic cells. Proc. R. Soc. Lond. Ser. B Biol. Sci. 84, 57–66 (1911).

    Google Scholar 

  80. Mudd, S., Shaw, C. H., Czarnetzky, E. J. & Flosdorf, E. W. A low temperature ball-mill for the liberation of labile cellular products. J. Immunol. 32, 483–489 (1937).

    Article  Google Scholar 

  81. Kaupp, G., Boy, J. & Schmeyers, J. Iminiumsalze in quantitativen Gas/Festköper- und Festkörper/Festkörper-Reaktionen. J. Prakt. Chem. Chemiker-Ztg. 340, 346–355 (1998).

    Article  CAS  Google Scholar 

  82. Kaupp, G., Reza Naimi-Jamal, M. & Schmeyers, J. Solvent-free Knoevenagel condensations and Michael additions in the solid state and in the melt with quantitative yield. Tetrahedron 59, 3753–3760 (2003).

    Article  CAS  Google Scholar 

  83. Andersen, J. & Mack, J. Insights into mechanochemical reactions at targetable and stable, sub-ambient temperatures. Angew. Chem. Int. Ed. 57, 13062–13065 (2018).

    Article  CAS  Google Scholar 

  84. Andersen, J., Brunemann, J. & Mack, J. Exploring stable, sub-ambient temperatures in mechanochemistry via a diverse set of enantioselective reactions. React. Chem. Eng. 4, 1229–1236 (2019).

    Article  CAS  Google Scholar 

  85. Andersen, J. M. & Mack, J. Decoupling the Arrhenius equation via mechanochemistry. Chem. Sci. 8, 5447–5453 (2017).

    Article  CAS  Google Scholar 

  86. André, V. et al. Mechanosynthesis of the metallodrug bismuth subsalicylate from Bi2O3 and structure of bismuth salicylate without auxiliary organic ligands. Angew. Chem. Int. Ed. 50, 1433–7851 (2011).

    Article  Google Scholar 

  87. Seo, T., Toyoshima, N., Kubota, K. & Ito, H. Tackling solubility issues in organic synthesis: solid-state cross-coupling of insoluble aryl halides. J. Am. Chem. Soc. 143, 6165–6175 (2021).

    Article  CAS  Google Scholar 

  88. Takahashi, R. et al. Mechanochemical synthesis of magnesium-based carbon nucleophiles in air and their use in organic synthesis. Nat. Commun. 12, 6691 (2021).

    Article  CAS  Google Scholar 

  89. Gao, P., Jiang, J., Maeda, S., Kubota, K. & Ito, H. Mechanochemically generated calcium‐based heavy Grignard reagents and their application to carbon–carbon bond‐forming reactions. Angew. Chem. Int. Ed. 61, e202207118 (2022).

    CAS  Google Scholar 

  90. Kubota, K., Endo, T., Uesugi, M., Hayashi, Y. & Ito, H. Solid-state C–N cross-coupling reactions with carbazoles as nitrogen nucleophiles using mechanochemistry. ChemSusChem 15, e202102132 (2022).

    Article  CAS  Google Scholar 

  91. Cindro, N., Tireli, M., Karadeniz, B., Mrla, T. & Užarević, K. Investigations of thermally controlled mechanochemical milling reactions. ACS Sustain. Chem. Eng. 7, 16301–16309 (2019).

    Article  CAS  Google Scholar 

  92. Stolar, T. et al. Mechanochemical prebiotic peptide bond formation. Angew. Chem. Int. Ed. 60, 12727–12731 (2021).

    Article  CAS  Google Scholar 

  93. Linberg, K., Röder, B., Al-Sabbagh, D., Emmerling, F. & Michalchuk, A. L. Controlling polymorphism in molecular cocrystals by variable temperature ball milling. Faraday Discuss. https://doi.org/10.1039/D2FD00115B (2022).

    Article  Google Scholar 

  94. Crawford, D. E. & Casaban, J. Recent developments in mechanochemical materials synthesis by extrusion. Adv. Mater. 28, 5747–5754 (2016).

    Article  CAS  Google Scholar 

  95. Crawford, D. E., Miskimmin, C. K. G., Albadarin, A. B., Walker, G. & James, S. L. Organic synthesis by twin screw extrusion (TSE): continuous, scalable and solvent-free. Green Chem. 19, 1507–1518 (2017).

    Article  CAS  Google Scholar 

  96. Crawford, D. et al. Synthesis by extrusion: continuous, large-scale preparation of MOFs using little or no solvent. Chem. Sci. 6, 1645–1649 (2015).

    Article  CAS  Google Scholar 

  97. Karadeniz, B. et al. Benign by design: green and scalable synthesis of zirconium UiO-metal–organic frameworks by water-assisted mechanochemistry. ACS Sustain. Chem. Eng. 6, 15841–15849 (2018).

    Article  CAS  Google Scholar 

  98. Cintas, P., Cravotto, G., Barge, A. & Martina, K. in Polymer Mechanochemistry (ed. Boulatov, R.) 239–284 (Springer, 2014).

  99. Giannakoudakis, D. A., Chatel, G. & Colmenares, J. C. in Heterogeneous Photocatalysis (eds Muñoz-Batista, M., Navarrete Muñoz, A. & Luque, R.) 29–70 (Springer, 2020).

  100. Cravotto, G., Gaudino, E. C. & Cintas, P. On the mechanochemical activation by ultrasound. Chem. Soc. Rev. 42, 7521–7534 (2013).

    Article  CAS  Google Scholar 

  101. Chatel, G. & Varma, R. S. Ultrasound and microwave irradiation: contributions of alternative physicochemical activation methods to green chemistry. Green Chem. 21, 6043–6050 (2019).

    Article  CAS  Google Scholar 

  102. Santos, H. M.; Lodeiro, C. & Capelo-Martínez, J.-L. in Ultrasound in Chemistry: Analytical Applications (ed. Capelo-Martínez, J.-L.) Ch. 1 (Wiley, 2009).

  103. Mordyuk, B. N. & Prokopenko, G. I. Mechanical alloying of powder materials by ultrasonic milling. Ultrasonics 42, 43–46 (2004).

    Article  CAS  Google Scholar 

  104. Chen, D. & Xiao, T. One-step synthesis of Zn to single-phase nanocrystalline ZnO by solid-liquid reaction ball milling assisted by ultrasonic wave. J. Am. Ceram. Soc. 93, 2675–2678 (2010).

    Article  CAS  Google Scholar 

  105. Suslick, K. S. Applications of ultrasound to materials chemistry. MRS Bull. 20, 29–34 (1995).

    Article  CAS  Google Scholar 

  106. Kozlov, A. V., Mordyuk, B. N. & Prokopenko G. I. Device for production of powder materials. Ukraine patent 59770A. https://sis.ukrpatent.org/en/search/detail/370903/ (2002).

  107. Perekos, A. O. et al. Structural state and magnetic properties of the nanocrystalline Ni fabricated in a ultrasonic ball mill. Metallofiz. Noveishie Tekhnologii 29, 211–223 (2007).

    CAS  Google Scholar 

  108. Perekos, А. Е. et al. Study of the process of gas emission from Ni nanocrystalline powders fabricated by ball grinding in ultrasonic mill. Metallofiz. Noveishie Tekhnologii 33, 93–103 (2011).

    CAS  Google Scholar 

  109. Nadutov, V. M. et al. Influence of ultrasonic processing in a ball mill on phase-structural characteristics of superfine powder blends of copper with iron and cobalt. Metallofiz. Noveishie Tekhnologii 40, 501–514 (2018).

    Article  CAS  Google Scholar 

  110. Nadutov, V. M., Mordyuk, B. N., Volosevich, P. Y., Svistunov, E. A. & Perizhnyak, A. V. Effect of graphite on the degree of grinding and the structure of α-Fe powder in an ultrasonic mill. Phys. Met. Metallogr. 104, 415–424 (2007).

    Article  Google Scholar 

  111. Nadutov, V. M. et al. Investigation of process of layering of the solid solutions formed by ultrasonic milling of coarse-grained powder blends of copper with cobalt and copper with iron, and its influence on their structure–phase state and magnetic properties. Metallofiz. Noveishie Tekhnologii 40, 1185–1199 (2018).

    Article  CAS  Google Scholar 

  112. Nadutov, V. M. et al. Thermal stability of solid solutions formed by ultrasonic milling of Cu–Co and Cu–Fe powder mixtures. Ukr. J. Phys. 62, 685–691 (2017).

    Article  Google Scholar 

  113. Nadutov, V. M. et al. Structure and magnetic properties of the Cu–Co and Cu–Fe nanopowders obtained in ultrasonic ball mill. Metallofiz. Noveishie Tekhnologii 39, 525–539 (2017).

    Article  CAS  Google Scholar 

  114. Chen, D., Liu, H. Y. & Xia, S. R. One-step decomposition of basic carbonates into single-phase crystalline metallic oxides nanoparticle by ultrasonic wave-assisted ball milling technology. Ceram. Int. 38, 821–825 (2012).

    Article  CAS  Google Scholar 

  115. Chen, D., Liu, H. Y.- & Li, L. One-step synthesis of manganese ferrite nanoparticles by ultrasonic wave-assisted ball milling technology. Mater. Chem. Phys. 134, 921–924 (2012).

    Article  CAS  Google Scholar 

  116. Yuan, Z., Chen, Z. H., Chen, D. & Kang, Z. T. Analyses of factors affecting nickel ferrite nanoparticles synthesis in ultrasound-assisted aqueous solution ball milling. Ultrason. Sonochem. 22, 188–197 (2015).

    Article  CAS  Google Scholar 

  117. Luo, Y., Chen, D., Wei, F. & Liang, Z. Synthesis of Cu-BTC metal-organic framework by ultrasonic wave-assisted ball milling with enhanced Congo red removal property. ChemistrySelect 3, 11435–11440 (2018).

    Article  CAS  Google Scholar 

  118. Stolar, T. et al. In situ monitoring of the mechanosynthesis of the archetypal metal–organic framework HKUST-1: effect of liquid additives on the milling reactivity. Inorg. Chem. 56, 6599–6608 (2017).

    Article  CAS  Google Scholar 

  119. Tanaka, R. et al. Verification of the mixing processes of the active pharmaceutical ingredient, excipient and lubricant in a pharmaceutical formulation using a resonant acoustic mixing technology. RSC Adv. 6, 87049–87057 (2016).

    Article  CAS  Google Scholar 

  120. Rumeau, N., Threlfall, D. & Wilmet, A. in Proc. Insensitive Munitions & Energetic Materials Technology Symposium (IMEMTS) 1–10 (2015).

  121. Titi, H. M., Do, J. L., Howarth, A. J., Nagapudi, K. & Friščić, T. Simple, scalable mechanosynthesis of metal–organic frameworks using liquid-assisted resonant acoustic mixing (LA-RAM). Chem. Sci. 11, 7578–7584 (2020).

    Article  CAS  Google Scholar 

  122. Michalchuk, A. A. L. et al. Ball-free mechanochemistry: in situ real-time monitoring of pharmaceutical co-crystal formation by resonant acoustic mixing. Chem. Commun. 54, 4033–4036 (2018).

    Article  CAS  Google Scholar 

  123. Nagapudi, K., Umanzor, E. Y. & Masui, C. High-throughput screening and scale-up of cocrystals using resonant acoustic mixing. Int. J. Pharm. 521, 337–345 (2017).

    Article  CAS  Google Scholar 

  124. Am Ende, D. J., Anderson, S. R. & Salan, J. S. Development and scale-up of cocrystals using resonant acoustic mixing. Org. Process. Res. Dev. 18, 331–341 (2014).

    Article  CAS  Google Scholar 

  125. Andrews, M. R., Collet, C., Wolff, A. & Hollands, C. Resonant acoustic® mixing: processing and safety. Propellants Explos. Pyrotech. 45, 77–86 (2020).

    Article  CAS  Google Scholar 

  126. Anderson, S. R., Am Ende, D. J., Salan, J. S. & Samuels, P. Preparation of an energetic-energetic cocrystal using resonant acoustic mixing. Propellants Explos. Pyrotech. 39, 637–640 (2014).

    Article  CAS  Google Scholar 

  127. Zhang, J. & Shreeve, J. M. Time for pairing: cocrystals as advanced energetic materials. CrystEngComm 18, 6124–6133 (2016).

    Article  CAS  Google Scholar 

  128. Green, N. J., Xu, J. & Sutherland, J. D. Illuminating life’s origins: UV photochemistry in abiotic synthesis of biomolecules. J. Am. Chem. Soc. 143, 7219–7236 (2021).

    Article  CAS  Google Scholar 

  129. Hoffmann, N. Photochemical reactions as key steps in organic synthesis. Chem. Rev. 108, 1052–1103 (2008).

    Article  CAS  Google Scholar 

  130. Atkinson, M. B. J. et al. General application of mechanochemistry to templated solid-state reactivity: rapid and solvent-free access to crystalline supermolecules. Chem. Commun. 5713–5715 (2008).

  131. Ma, D.-Y. & Wärnmark, K. Mechanoassisted supramolecular catalysis in solid state synthesis. ChemCatChem 2, 1059–1060 (2010).

    Article  CAS  Google Scholar 

  132. Yelgaonkar, S. P., Swenson, D. C. & MacGillivray, L. R. Supramolecular chemistry under mechanochemical conditions: a small molecule template generated and integrated into a molecular-to-supramolecular and back-to-molecular cascade reaction. Chem. Sci. 11, 3569–3573 (2020).

    Article  CAS  Google Scholar 

  133. Hernández, J. G. Mechanochemical borylation of aryldiazonium salts; merging light and ball milling. Beilstein J. Org. Chem. 13, 1463–1469 (2017).

    Article  Google Scholar 

  134. Toda, F., Tanaka, K. & Sekikawa, A. Host–guest complex formation by a solid–solid reaction. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39870000279 (1987).

    Article  Google Scholar 

  135. Sokolov, A. N., Bučar, D.-K., Baltrusaitis, J., Gu, S. X. & MacGillivray, L. R. Supramolecular catalysis in the organic solid state through dry grinding. Angew. Chem. Int. Ed. 49, 4273–4277 (2010).

    Article  CAS  Google Scholar 

  136. Stojaković, J., Farris, B. S. & MacGillivray, L. R. Vortex grinding for mechanochemistry: application for automated supramolecular catalysis and preparation of a metal–organic framework. Chem. Commun. 48, 7958–7960 (2012).

    Article  Google Scholar 

  137. Obst, M. & König, B. Solvent-free, visible-light photocatalytic alcohol oxidations applying an organic photocatalyst. Beilstein J. Org. Chem. 12, 2358–2363 (2016).

    Article  CAS  Google Scholar 

  138. Štrukil, V. & Sajko, I. Mechanochemically-assisted solid-state photocatalysis (MASSPC). Chem. Commun. 53, 9101–9104 (2017).

    Article  Google Scholar 

  139. Schotten, C. et al. Making electrochemistry easily accessible to the synthetic chemist. Green Chem. 22, 3358–3375 (2020).

    Article  CAS  Google Scholar 

  140. Zhu, C., Ang, N. W. J., Meyer, T. H., Qiu, Y. & Ackermann, L. Organic electrochemistry: molecular syntheses with potential. ACS Cent. Sci. 7, 415–431 (2021).

    Article  CAS  Google Scholar 

  141. Calka, A. & Wexler, D. Mechanical milling assisted by electrical discharge. Nature 419, 147–151 (2002).

    Article  CAS  Google Scholar 

  142. Calka, A. & Wexler, D. Processing of materials by electric discharge assisted mechanical milling. Mater. Sci. Forum 674, 29–39 (2011).

    Article  CAS  Google Scholar 

  143. Zhu, M., Dai, L. Y., Gu, N. S., Cao, B. & Ouyang, L. Z. Synergism of mechanical milling and dielectric barrier discharge plasma on the fabrication of nano-powders of pure metals and tungsten carbide. J. Alloys Compd. 478, 624–629 (2009).

    Article  CAS  Google Scholar 

  144. Borcia, G., Anderson, C. A. & Brown, N. M. D. Dielectric barrier discharge for surface treatment: application to selected polymers in film and fibre form. Plasma Sources Sci. Technol. 12, 335–344 (2003).

    Article  CAS  Google Scholar 

  145. Ouyang, L., Cao, Z., Wang, H., Hu, R. & Zhu, M. Application of dielectric barrier discharge plasma-assisted milling in energy storage materials – a review. J. Alloys Compd. 691, 422–435 (2017).

    Article  CAS  Google Scholar 

  146. Cao, Z. et al. Dual-tuning effects of In, Al, and Ti on the thermodynamics and kinetics of Mg85In5Al5Ti5 alloy synthesized by plasma milling. J. Alloys Compd. 623, 354–358 (2015).

    Article  CAS  Google Scholar 

  147. Schumacher, C., Hernández, J. G. & Bolm, C. Electro‐mechanochemical atom transfer radical cyclizations using piezoelectric BaTiO3. Angew. Chem. Int. Ed. 59, 16357–16360 (2020).

    Article  CAS  Google Scholar 

  148. Kubota, K., Pang, Y., Miura, A. & Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 366, 1500–1504 (2019).

    Article  CAS  Google Scholar 

  149. Pang, Y., Won Lee, J., Kubota, K. & Ito, H. Solid-state radical C–H trifluoromethylation reactions using ball milling and piezoelectric materials. Angew. Chem. Int. Ed. 59, 2570–22576 (2020).

    Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the ‘Research Cooperability’ Program of the Croatian Science Foundation funded by the European Union from the European Social Fund under the Operational Programme Efficient Human Resources 2014–2020, through grant PZS-2019-02-4129. The authors acknowledge the Croatian Science Foundation (grant no. IP-2020-02-4702) for financial support. The authors thank Ivan Kulcsár for help with slow-motion photography.

Author information

Authors and Affiliations

Authors

Contributions

All authors made substantial contributions to discussion of content, writing and editing of the manuscript.

Corresponding authors

Correspondence to Bahar Karadeniz, Ivana Brekalo or Krunoslav Užarević.

Ethics declarations

Competing interests

K.U. is a shareholder in InSolido Technologies, which produces milling reactors.

Peer review

Peer review information

Nature Reviews Chemistry thanks Michael Ferguson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Low-frequency sonic mixing technology: www.energy.gov/eere/amo/low-frequency-sonic-mixing-technology

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez, V., Stolar, T., Karadeniz, B. et al. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat Rev Chem 7, 51–65 (2023). https://doi.org/10.1038/s41570-022-00442-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00442-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing