Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sulfonyl fluorides as targets and substrates in the development of new synthetic methods

Abstract

The advent of sulfur(vi)-fluoride exchange (SuFEx) processes as transformations with click-like reactivity has invigorated research into electrophilic species featuring a sulfur–fluorine bond. Among these, sulfonyl fluorides have emerged as the workhorse functional group, with diverse applications being reported. Sulfonyl fluorides are used as electrophilic warheads by both medicinal chemists and chemical biologists. The balance of reactivity and stability that is so attractive for these applications, particularly the resistance of sulfonyl fluorides to hydrolysis under physiological conditions, has provided opportunities for synthetic chemists. New synthetic approaches that start with sulfur-containing substrates include the activation of sulfonamides using pyrilium salts, the deoxygenation of sulfonic acids, and the electrochemical oxidation of thiols. Employing non-sulfur-containing substrates has led to the development of transition-metal-catalysed processes based on palladium, copper and nickel, as well as the use of SO2F2 gas as an electrophilic hub. Selectively manipulating molecules that already contain a sulfonyl fluoride group has also proved to be a popular tactic, with metal-catalysed processes again at the fore. Finally, coaxing sulfonyl fluorides to engage with nucleophiles, when required, and under suitable reaction conditions, has led to new activation methods. This Review provides an overview of the challenges in the efficient synthesis and manipulation of these intriguing functional groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background of sulfonyl fluoride functional group.
Fig. 2: Different established routes to the preparation of sulfonyl fluorides.
Fig. 3: Accessing various sulfonyl-containing functional groups from sulfonyl fluorides through SuFEx.
Fig. 4: Multifunctional sulfonyl fluoride reagents and their applications.
Fig. 5: Applications of sulfonyl fluorides in organic synthesis (parts a–c) and materials chemistry (parts d–f).
Fig. 6: Applications of SFs in chemical biology.
Fig. 7: Applications of SFs in 18F-radiolabelling.

Similar content being viewed by others

References

  1. Steinkopf, W. Über aromatische sulfofluoride. J. Prakt. Chem. 117, 1–82 (1927).

    Article  CAS  Google Scholar 

  2. Dong, J., Krasnova, L., Finn, M. G. & Sharpless, K. B. Sulfur(vi) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew. Chem. Int. Ed. 53, 9430–9448 (2014). This is the report that sparked the current interest in S(VI)-F-containing electrophiles.

    Article  CAS  Google Scholar 

  3. Steinkopf, W. & Jaeger, P. Über aromatische sulfofluoride. II. Mitteilung. J. Prakt. Chem. 128, 63–88 (1930).

    Article  CAS  Google Scholar 

  4. Davies, W. & Dick, J. H. CCLXXXVI. — Aromatic sulphonyl fluorides: a convenient method of preparation. J. Chem. Soc. 1931, 2104–2109 (1931).

    Article  Google Scholar 

  5. Wiberg, E. & Holleman, A. F. Inorganic Chemistry (Academic, 2001).

  6. Takacs, G. A. Heats of formation and bond dissociation energies of some simple sulfur- and halogen-containing molecules. J. Chem. Eng. Data 23, 174–175 (1978).

    Article  CAS  Google Scholar 

  7. Wray, K. L. & Feldman, E. V. Shock tube study of the decomposition kinetics of SO2F2. J. Chem. Phys. 54, 3445–3449 (1971).

    Article  CAS  Google Scholar 

  8. Cady, G. H. & Misra, S. Hydrolysis of sulfuryl fluoride. Inorg. Chem. 13, 837–841 (1974).

    Article  CAS  Google Scholar 

  9. Aberlin, M. E. & Bunton, C. A. Spontaneous hydrolysis of sulfonyl fluorides. J. Org. Chem. 35, 1825–1828 (1970).

    Article  CAS  Google Scholar 

  10. Swain, C. G. & Scott, C. B. Rates of solvolysis of some alkyl fluorides and chlorides1. J. Am. Chem. Soc. 75, 246–248 (1953).

    Article  CAS  Google Scholar 

  11. Bogolubsky, A. V. et al. Sulfonyl fluorides as alternative to sulfonyl chlorides in parallel synthesis of aliphatic sulfonamides. ACS Comb. Sci. 16, 192–197 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Chinthakindi, P. K. & Arvidsson, P. I. Sulfonyl fluorides (SFs): more than click reagents? Eur. J. Org. Chem. 3648–3666 (2018).

  13. Barrow, A. S. et al. The growing applications of SuFEx click chemistry. Chem. Soc. Rev. 48, 4731–4758 (2019). This excellent review focuses on the reactivity of sulfonyl fluorides in click applications.

    Article  CAS  PubMed  Google Scholar 

  14. Ball, N. D. in Emerging Fluorinated Motifs (eds Cahard, J. & Ma, J.-A.) 621–674 (Wiley, 2020).

  15. Narayanan, A. & Jones, L. H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 6, 2650–2659 (2015). This review provides a good overview of the use of sulfonyl fluorides as covalent binding groups in chemical biology applications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mukherjee, H. et al. A study of the reactivity of S(vi)–F containing warheads with nucleophilic amino-acid side chains under physiological conditions. Org. Biomol. Chem. 15, 9685–9695 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Shannon, D. A. et al. Sulfonyl fluoride analogues as activity-based probes for serine proteases. ChemBioChem 13, 2327–2330 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Fahrney, D. E. & Gold, A. M. Sulfonyl fluorides as inhibitors of esterases. I. Rates of reaction with acetylcholinesterase, α-chymotrypsin, and trypsin. J. Am. Chem. Soc. 85, 997–1000 (1963).

    Article  CAS  Google Scholar 

  19. Markwardt, F., Drawert, J. & Walsmann, P. Synthetic low molecular weight inhibitors of serum kallikrein. Biochem. Pharmacol. 23, 2247–2256 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Kamps, M. P., Taylor, S. S. & Sefton, B. M. Direct evidence that oncogenic tyrosine kinases and cyclic AMP-dependent protein kinase have homologous ATP-binding sites. Nature 310, 589–592 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Hett, E. C. et al. Rational targeting of active-site tyrosine residues using sulfonyl fluoride probes. ACS Chem. Biol. 10, 1094–1098 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Emsley, J. & Overill, R. E. Defining the bond energy of a strong hydrogen bond. Chem. Phys. Lett. 65, 616–617 (1979).

    Article  CAS  Google Scholar 

  23. Larson, J. W. & McMahon, T. B. Gas-phase bifluoride ion. An ion cyclotron resonance determination of the hydrogen bond energy in fluoride ion (FHF-) from gas-phase fluoride transfer equilibrium measurements. J. Am. Chem. Soc. 104, 5848–5849 (1982).

    Article  CAS  Google Scholar 

  24. Mukherjee, P. et al. Sulfonamide synthesis via calcium triflimide activation of sulfonyl fluorides. Org. Lett. 20, 3943–3947 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Mahapatra, S. et al. SuFEx activation with Ca(NTf2)2: a unified strategy to access sulfamides, sulfamates, and sulfonamides from S(vi) fluorides. Org. Lett. 22, 4389–4394 (2020). This paper documents a powerful method for the reaction of sulfonyl fluorides, and related S-F electrophiles, with amines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chatgilialoglu, C., Griller, D. & Guerra, M. Experimental and theoretical approaches to the optical absorption spectra of sulfonyl radicals. J. Phys. Chem. 91, 3747–3750 (1987).

    Article  CAS  Google Scholar 

  27. Chatgilialoglu, C., Griller, D., Kanabus-Kaminska, J. M. & Lossing, F. P. Sulfur–chlorine bond dissociation enthalpies in methane- and benzene-sulfonyl chlorides. J. Chem. Soc. Perkin Trans. 2, 357–360 (1994).

    Article  Google Scholar 

  28. Hirsch, E., Hünig, S. & Reißig, H.-U. Darstellung von (2,2-Dimethyl-1-methylenpropyl)-methansulfonat und -trifluoracetat. Chem. Ber. 115, 399–401 (1982).

    Article  CAS  Google Scholar 

  29. Kwon, J. & Kim, B. M. Synthesis of arenesulfonyl fluorides via sulfuryl fluoride incorporation from arynes. Org. Lett. 21, 428–433 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Lee, C., Ball, N. D. & Sammis, G. M. One-pot fluorosulfurylation of Grignard reagents using sulfuryl fluoride. Chem. Commun. 55, 14753–14756 (2019).

    Article  CAS  Google Scholar 

  31. Smedley, C. J. et al. Diversity oriented clicking (DOC): divergent synthesis of sufexable pharmacophores from 2-substituted-alkynyl-1-sulfonyl fluoride (SASF) hubs. Angew. Chem. Int. Ed. 59, 12460–12469 (2020).

    Article  CAS  Google Scholar 

  32. So, C. M. & Kwong, F. Y. Palladium-catalyzed cross-coupling reactions of aryl mesylates. Chem. Soc. Rev. 40, 4963–4972 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Nie, X. et al. Radical fluorosulfonylation: accessing alkenyl sulfonyl fluorides from alkenes. Angew. Chem. Int. Ed. 60, 3956–3960 (2021). An example of generating and using the fluorosulfonyl radical in a synthetically useful transformation.

    Article  CAS  Google Scholar 

  34. Boiko, V. N. et al. A convenient synthetic route to 2,4,6-tris(chlorosulfonyl)- and 2,4,6-tris(fluorosulfonyl)phenol, aniline and chlorobenzene. J. Fluor. Chem. 132, 1219–1226 (2011).

    Article  CAS  Google Scholar 

  35. Davies, W. & Dick, J. H. 57. Aliphatic sulphonyl fluorides. J. Chem. Soc. 1932, 483–486 (1932).

    Article  Google Scholar 

  36. Bianchi, T. A. & Cate, L. A. Phase transfer catalysis. Preparation of aliphatic and aromatic sulfonyl fluorides. J. Org. Chem. 42, 2031–2032 (1977).

    Article  CAS  Google Scholar 

  37. Kang, S. O., Powell, D., Day, V. W. & Bowman-James, K. Trapped bifluoride. Angew. Chem. Int. Ed. 45, 1921–1925 (2006).

    Article  CAS  Google Scholar 

  38. Beaman, A. G. & Robins, R. K. Potential purine antagonists. XXVII. Synthesis and reactions of some purinesulfonyl fluorides. J. Am. Chem. Soc. 83, 4038–4044 (1961).

    Article  CAS  Google Scholar 

  39. Brown, D. J. & Hoskins, J. A. Simple pyrimidines. Part XIV. The formation and reactions of some derivatives of simple pyrimidinesulphonic acids. J. Chem. Soc. Perkin Trans. 1, 522–527 (1972).

    Article  Google Scholar 

  40. Narayan, S. et al. “On water”: unique reactivity of organic compounds in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005).

    Article  CAS  Google Scholar 

  41. Caddick, S., Wilden, J. D., Bush, H. D., Wadman, S. N. & Judd, D. B. A new route to sulfonamides via intermolecular radical addition to pentafluorophenyl vinylsulfonate and subsequent aminolysis. Org. Lett. 4, 2549–2551 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Caddick, S., Wilden, J. D. & Judd, D. B. Observations on the reactivity of pentafluorophenyl sulfonate esters. Chem. Commun. 21, 2727–2728 (2005).

    Article  Google Scholar 

  43. Vedovato, V., Talbot, E. P. A. & Willis, M. C. Copper-catalyzed synthesis of activated sulfonate esters from boronic acids, DABSO, and pentafluorophenol. Org. Lett. 20, 5493–5496 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Zincke, T. & Frohneberg, W. Über Dithiohydrochinon. Ber. Dtsch. Chem. Ges. 42, 2721–2736 (1909).

    Article  CAS  Google Scholar 

  45. Douglass, I. B. & Johnson, T. B. The interaction of chlorine with different types of organic sulfur compounds. J. Am. Chem. Soc. 60, 1486–1489 (1938).

    Article  CAS  Google Scholar 

  46. Caldwell, W. T. & Kornfeld, E. C. Substituted 2-sulfonamido-5-aminopyridines. J. Am. Chem. Soc. 64, 1695–1698 (1942).

    Article  CAS  Google Scholar 

  47. Wright, S. W. & Hallstrom, K. N. A convenient preparation of heteroaryl sulfonamides and sulfonyl fluorides from heteroaryl thiols. J. Org. Chem. 71, 1080–1084 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Wang, L. & Cornella, J. A unified strategy for arylsulfur(vi) fluorides from aryl halides: access to Ar-SOF3 compounds. Angew. Chem. Int. Ed. 59, 23510–23515 (2020). This shows oxidative chlorination followed by fluorination, using a convenient more sustainable chlorinating reagent.

    Article  CAS  Google Scholar 

  49. Kim, J.-G. & Jang, D. O. A convenient, one-pot procedure for the preparation of acyl and sulfonyl fluorides using Cl3CCN, Ph3P, and TBAF(t-BuOH)4. Synlett 2010, 3049–3052 (2010).

    Article  Google Scholar 

  50. Jiang, Y., Alharbi, N. S., Sun, B. & Qin, H.-L. Facile one-pot synthesis of sulfonyl fluorides from sulfonates or sulfonic acids. RSC Adv. 9, 13863–13867 (2019).

    Article  CAS  Google Scholar 

  51. Gómez-Palomino, A. & Cornella, J. Selective late-stage sulfonyl chloride formation from sulfonamides enabled by Pyry-BF4. Angew. Chem. Int. Ed. 58, 18235–18239 (2019).

    Article  Google Scholar 

  52. Pérez-Palau, M. & Cornella, J. Synthesis of sulfonyl fluorides from sulfonamides. Eur. J. Org. Chem. 2497–2500 (2020). This report shows how widely available primary sulfonamides can be used as substrates to access sulfonyl fluorides.

  53. Segall, Y., Quistad, G. B. & Casida, J. E. Cannabinoid CB1 receptor chemical affinity probes: methods suitable for preparation of isopropyl [11,12-3H]dodecylfluorophosphonate and [11,12-3H]dodecanesulfonyl fluoride. Synth. Commun. 33, 2151–2159 (2003).

    Article  CAS  Google Scholar 

  54. Brouwer, A. J., Ceylan, T., Linden, T. V. D. & Liskamp, R. M. J. Synthesis of β-aminoethanesulfonyl fluorides or 2-substituted taurine sulfonyl fluorides as potential protease inhibitors. Tetrahedron Lett. 50, 3391–3393 (2009).

    Article  CAS  Google Scholar 

  55. Kirihara, M., Naito, S., Ishizuka, Y., Hanai, H. & Noguchi, T. Oxidation of disulfides with Selectfluor™: concise syntheses of thiosulfonates and sulfonyl fluorides. Tetrahedron Lett. 52, 3086–3089 (2011).

    Article  CAS  Google Scholar 

  56. Kirihara, M. et al. Oxidation of disulfides with electrophilic halogenating reagents: concise methods for preparation of thiosulfonates and sulfonyl halides. Tetrahedron 70, 2464–2471 (2014).

    Article  CAS  Google Scholar 

  57. Laudadio, G. et al. Sulfonyl fluoride synthesis through electrochemical oxidative coupling of thiols and potassium fluoride. J. Am. Chem. Soc. 141, 11832–11836 (2019). This electrochemistry approach uses simple starting materials — thiols and fluoride — to construct sulfonyl fluorides, with potential sustainable advantages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Banks, R. E., Besheesh, M. K., Mohialdin-Khaffaf, S. N. & Sharif, I. N-Halogeno compounds. Part 18. 1-Alkyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane salts: user-friendly site-selective electrophilic fluorinating agents of the N-fluoroammonium class. J. Chem. Soc. Perkin Trans. 1, 2069–2076 (1996).

    Article  Google Scholar 

  59. Toulgoat, F., Langlois, B. R., Médebielle, M. & Sanchez, J.-Y. An efficient preparation of new sulfonyl fluorides and lithium sulfonates. J. Org. Chem. 72, 9046–9052 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Emmett, E. Development of Catalytic Methods to Exploit Sulfur Dioxide in Organic Synthesis. Thesis, Univ. Oxford (2014).

  61. Davies, A. T., Curto, J. M., Bagley, S. W. & Willis, M. C. One-pot palladium-catalyzed synthesis of sulfonyl fluorides from aryl bromides. Chem. Sci. 8, 1233–1237 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Tribby, A. L., Rodriguez, I., Shariffudin, S. & Ball, N. D. Pd-catalyzed conversion of aryl iodides to sulfonyl fluorides using SO2 surrogate DABSO and Selectfluor. J. Org. Chem. 82, 2294–2299 (2017). This, and the preceding paper, show that readily available non-sulfur containing substrates, aryl halides, can be converted into sulfonyl fluorides.

    Article  CAS  PubMed  Google Scholar 

  63. Nguyen, B., Emmett, E. J. & Willis, M. C. Palladium-catalyzed aminosulfonylation of aryl halides. J. Am. Chem. Soc. 132, 16372–16373 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Richards-Taylor, C. S., Blakemore, D. C. & Willis, M. C. One-pot three-component sulfone synthesis exploiting palladium-catalysed aryl halide aminosulfonylation. Chem. Sci. 5, 222–228 (2014).

    Article  CAS  Google Scholar 

  65. Emmett, E. J., Hayter, B. R. & Willis, M. C. Palladium-catalyzed synthesis of ammonium sulfinates from aryl halides and a sulfur dioxide surrogate: a gas- and reductant-free process. Angew. Chem. Int. Ed. 53, 10204–10208 (2014).

    Article  CAS  Google Scholar 

  66. Deeming, A. S., Russell, C. J. & Willis, M. C. Palladium(ii)-catalyzed synthesis of sulfinates from boronic acids and DABSO: a redox-neutral, phosphine-free transformation. Angew. Chem. Int. Ed. 55, 747–750 (2016).

    Article  CAS  Google Scholar 

  67. Johnson, M. W. et al. Application of fundamental organometallic chemistry to the development of a gold-catalyzed synthesis of sulfinate derivatives. Angew. Chem. Int. Ed. 53, 4404–4407 (2014).

    Article  CAS  Google Scholar 

  68. Chen, Y. & Willis, M. C. Copper(i)-catalyzed sulfonylative Suzuki–Miyaura cross-coupling. Chem. Sci. 8, 3249–3253 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lo, P. K. T., Chen, Y. & Willis, M. C. Nickel(ii)-catalyzed synthesis of sulfinates from aryl and heteroaryl boronic acids and the sulfur dioxide surrogate DABSO. ACS Catal. 9, 10668–10673 (2019).

    Article  CAS  Google Scholar 

  70. Lou, T. S.-B., Bagley, S. W. & Willis, M. C. Cyclic alkenylsulfonyl fluorides: palladium-catalyzed synthesis and functionalization of compact multifunctional reagents. Angew. Chem. Int. Ed. 58, 18859–18863 (2019).

    Article  CAS  Google Scholar 

  71. Liu, Y. et al. Arenesulfonyl fluoride synthesis via copper-catalyzed fluorosulfonylation of arenediazonium salts. Org. Lett. 22, 2281–2286 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Liu, S., Huang, Y., Xu, X.-H. & Qing, F.-L. Fluorosulfonylation of arenediazonium tetrafluoroborates with Na2S2O5 and N-fluorobenzenesulfonimide. J. Fluor. Chem. 240, 109653 (2020).

    Article  CAS  Google Scholar 

  73. Lin, Q. et al. Arenesulfonyl fluoride synthesis via copper-free Sandmeyer-type fluorosulfonylation of arenediazonium salts. Chin. J. Chem. 38, 1107–1110 (2020).

    Article  CAS  Google Scholar 

  74. Zhong, T. et al. Copper-free Sandmeyer-type reaction for the synthesis of sulfonyl fluorides. Org. Lett. 22, 3072–3078 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Louvel, D. et al. Metal-free visible-light synthesis of arylsulfonyl fluorides: scope and mechanism. Chemistry 27, 8704–8708 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Ykman, P. & Hall, H. K. One-step conversion of alkoxytrimethylsilanes to alkyl benzenesulfonates. J. Organomet. Chem. 116, 153–159 (1976).

    Article  CAS  Google Scholar 

  77. Gembus, V., Marsais, F. & Levacher, V. An efficient organocatalyzed interconversion of silyl ethers to tosylates using DBU and p-toluenesulfonyl fluoride. Synlett 2008, 1463–1466 (2008). An early demonstration of the effectiveness of pairing silicon-activated reagents with sulfonyl fluorides, to achieve efficient reactivity.

    Article  Google Scholar 

  78. Qin, H.-L., Zheng, Q., Bare, G. A. L., Wu, P. & Sharpless, K. B. A Heck–Matsuda process for the synthesis of β-arylethenesulfonyl fluorides: selectively addressable bis-electrophiles for SuFEx click chemistry. Angew. Chem. Int. Ed. 55, 14155–14158 (2016).

    Article  CAS  Google Scholar 

  79. Ciuffarin, E., Senatore, L. & Isola, M. Nucleophilic substitution at four-co-ordinate sulphur. Mobility of the leaving group. J. Chem. Soc. Perkin Trans. 2, 468–471 (1972).

    Article  Google Scholar 

  80. Pienta, N. J. & Kessler, R. J. Pentaenyl cations from the photolysis of retinyl acetate. Solvent effects on the leaving group ability and relative nucleophilicities: an unequivocal and quantitative demonstration of the importance of hydrogen bonding. J. Am. Chem. Soc. 114, 2419–2428 (1992).

    Article  CAS  Google Scholar 

  81. Zheng, Q. et al. SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc. Natl Acad. Sci. USA 116, 18808–18814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krutak, J. J., Burpitt, R. D., Moore, W. H. & Hyatt, J. A. Chemistry of ethenesulfonyl fluoride. Fluorosulfonylethylation of organic compounds. J. Org. Chem. 44, 3847–3858 (1979). This report first documented the remarkable reactivity of ESF.

    Article  CAS  Google Scholar 

  83. Luy, J.-N. & Tonner, R. Complementary base lowers the barrier in SuFEx click chemistry for primary amine nucleophiles. ACS Omega 5, 31432–31439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wei, M. et al. A broad-spectrum, catalytic amidation of sulfonyl fluorides and fluorosulfates. Angew. Chem. Int. Ed. 60, 7397–7404 (2021).

    Article  CAS  Google Scholar 

  85. Barrow, A. S. & Moses, J. E. Synthesis of sulfonyl azides via lewis base activation of sulfonyl fluorides and trimethylsilyl azide. Synlett 27, 1840–1843 (2016).

    Article  CAS  Google Scholar 

  86. Smedley, C. J. et al. Bifluoride ion mediated SuFEx trifluoromethylation of sulfonyl fluorides and iminosulfur oxydifluorides. Angew. Chem. Int. Ed. 58, 4552–4556 (2019).

    Article  CAS  Google Scholar 

  87. Hyatt, J. A. & White, A. W. Synthesis of aryl alkyl and aryl vinyl sulfones via friedel-crafts reactions of sulfonyl fluorides. Synthesis 1984, 214–217 (1984).

    Article  Google Scholar 

  88. Shirota, Y., Nagai, T. & Tokura, N. The reaction between benzylsulfonyl halide and phenyllithium. Bull. Chem. Soc. Jpn 39, 405–405 (1966).

    Article  CAS  Google Scholar 

  89. Frye, L. L., Sullivan, E. L., Cusack, K. P. & Funaro, J. M. Sulfonylation of organometallic reagents with arenesulfonyl fluorides: a simple one-step synthesis of sulfones. J. Org. Chem. 57, 697–701 (1992).

    Article  CAS  Google Scholar 

  90. Jang, W. B., Jeon, H. J. & Oh, D. Y. Direct sulfonylation of lithiated alkyl phosphonates with benzenesulfonyl fluoride; facile method for preparation of α-sulfonyl alkyl phosphonates and vinyl sulfones. Synth. Commun. 28, 1253–1256 (1998).

    Article  CAS  Google Scholar 

  91. Norris, T. The reaction of arenesulphonyl fluorides with anhydrous aluminium chloride. J. Chem. Soc. Perkin Trans. 1, 1378–1380 (1978).

    Article  Google Scholar 

  92. Lee, C. et al. The emerging applications of sulfur(vi) fluorides in catalysis. ACS Catal. 11, 6578–6589 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chinthakindi, P. K., Kruger, H. G., Govender, T., Naicker, T. & Arvidsson, P. I. On-water synthesis of biaryl sulfonyl fluorides. J. Org. Chem. 81, 2618–2623 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Cherepakha, A. Y. et al. Hetaryl bromides bearing the SO2F group–versatile substrates for palladium-catalyzed C–C coupling reactions. Eur. J. Org. Chem. 6682–6692 (2018).

  95. Fadeyi, O. et al. Chemoselective preparation of clickable aryl sulfonyl fluoride monomers: a toolbox of highly functionalized intermediates for chemical biology probe synthesis. ChemBioChem 17, 1925–1930 (2016). An example of how sulfonyl fluorides can tolerate the multiple reactions needed to prepare a collection of complex chemical probe reagents.

    Article  CAS  PubMed  Google Scholar 

  96. Lou, T. S.-B. & Willis, M. C. Arylsulfonyl fluoride boronic acids: preparation and coupling reactivity. Tetrahedron 76, 130782 (2020).

    Article  CAS  Google Scholar 

  97. Hedrick, R. M. Ethylene sulfonyl fluoride and its method of preparation. US Patent US2653973 (1953).

  98. Meng, Y.-P. et al. Ethenesulfonyl fluoride (ESF) and its derivatives in SuFEx click chemistry and more. Synthesis 52, 673–687 (2019).

    Google Scholar 

  99. Chen, J., Huang, B.-q, Wang, Z.-q, Zhang, X.-j & Yan, M. Asymmetric conjugate addition of ethylene sulfonyl fluorides to 3-amido-2-oxindoles: synthesis of chiral spirocyclic oxindole sultams. Org. Lett. 21, 9742–9746 (2019).

    Article  CAS  PubMed  Google Scholar 

  100. Zha, G. F. et al. Palladium-catalyzed fluorosulfonylvinylation of organic iodides. Angew. Chem. Int. Ed. 56, 4849–4852 (2017).

    Article  CAS  Google Scholar 

  101. Chinthakindi, P. K. et al. A synthesis of “dual warhead” β-aryl ethenesulfonyl fluorides and one-pot reaction to β-sultams. Org. Lett. 19, 480–483 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Chen, X.-Y., Wu, Y., Zhou, J., Wang, P. & Yu, J.-Q. Synthesis of β-arylethenesulfonyl fluoride via Pd-catalyzed nondirected C–H alkenylation. Org. Lett. 21, 1426–1429 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Wang, S.-M., Li, C., Leng, J., Bukhari, S. N. A. & Qin, H.-L. Rhodium(iii)-catalyzed oxidative coupling of N-methoxybenzamides and ethenesulfonyl fluoride: a C–H bond activation strategy for the preparation of 2-aryl ethenesulfonyl fluorides and sulfonyl fluoride substituted γ-lactams. Org. Chem. Front. 5, 1411–1415 (2018).

    Article  CAS  Google Scholar 

  104. Wang, S.-M., Moku, B., Leng, J. & Qin, H.-L. Rh-catalyzed carboxylates directed C-H activation for the synthesis of ortho-carboxylic 2-arylethenesulfonyl fluorides: access to unique electrophiles for SuFEx click chemistry. Eur. J. Org. Chem. 4407–4410 (2018).

  105. Ncube, G. & Huestis, M. P. Directed Cp*RhIII-catalyzed fluorosulfonylvinylation of arenes. Organometallics 38, 76–80 (2019).

    Article  CAS  Google Scholar 

  106. Chen, H.-R., Hu, Z.-Y., Qin, H.-L. & Tang, H. A novel three-component reaction for constructing indolizine-containing aliphatic sulfonyl fluorides. Org. Chem. Front. 8, 1185–1189 (2021).

    Article  CAS  Google Scholar 

  107. Zhang, X., Fang, W.-Y., Lekkala, R., Tang, W. & Qin, H.-L. An easy, general and practical method for the construction of alkyl sulfonyl fluorides. Adv. Synth. Catal. 362, 3358–3363 (2020).

    Article  CAS  Google Scholar 

  108. Xu, R., Xu, T., Yang, M., Cao, T. & Liao, S. A rapid access to aliphatic sulfonyl fluorides. Nat. Commun. 10, 3752 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhu, D. Y., Zhang, X. J. & Yan, M. Enantioselective addition of azlactones to ethylene sulfonyl fluoride via dual catalysis. Org. Lett. 23, 4228–4232 (2021). This example shows that catalytic enantioselective additions to ESF are possible.

    Article  CAS  PubMed  Google Scholar 

  110. Chen, J., Zhu, D.-y, Zhang, X.-j & Yan, M. Highly enantioselective addition of N-2,2,2-trifluoroethylisatin ketimines to ethylene sulfonyl fluoride. J. Org. Chem. 86, 3041–3048 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Ungureanu, A., Levens, A., Candish, L. & Lupton, D. W. N-heterocyclic carbene catalyzed synthesis of delta-sultones via α,β-unsaturated sulfonyl azolium intermediates. Angew. Chem. Int. Ed. 54, 11780–11784 (2015).

    Article  CAS  Google Scholar 

  112. Chen, X. et al. Synthesis of a class of fused δ-sultone heterocycles via DBU-catalyzed direct annulative SuFEx click of ethenesulfonyl fluorides and pyrazolones or 1,3-dicarbonyl compounds. Adv. Synth. Catal. 359, 3254–3260 (2017).

    Article  CAS  Google Scholar 

  113. Chen, X., Zha, G. F., Fang, W. Y., Rakesh, K. P. & Qin, H. L. A portal to a class of novel sultone-functionalized pyridines via an annulative SuFEx process employing Earth abundant nickel catalysts. Chem. Commun. 54, 9011–9014 (2018).

    Article  CAS  Google Scholar 

  114. Khumalo, M. F. et al. Synthesis of novel 1,2,4-thiadiazinane 1,1-dioxides via three component SuFEx type reaction. RSC Adv. 8, 37503–37507 (2018).

    Article  CAS  Google Scholar 

  115. Zheng, Q., Dong, J. & Sharpless, K. B. Ethenesulfonyl fluoride (ESF): an on-water procedure for the kilogram-scale preparation. J. Org. Chem. 81, 11360–11362 (2016).

    Article  CAS  PubMed  Google Scholar 

  116. Smedley, C. J. et al. 1-Bromoethene-1-sulfonyl fluoride (BESF) is another good connective hub for SuFEx click chemistry. Chem. Commun. 54, 6020–6023 (2018).

    Article  CAS  Google Scholar 

  117. Thomas, J. & Fokin, V. V. Regioselective synthesis of fluorosulfonyl 1,2,3-triazoles from bromovinylsulfonyl fluoride. Org. Lett. 20, 3749–3752 (2018).

    Article  CAS  PubMed  Google Scholar 

  118. Leng, J. & Qin, H.-L. 1-Bromoethene-1-sulfonyl fluoride (1-Br-ESF), a new SuFEx clickable reagent, and its application for regioselective construction of 5-sulfonylfluoro isoxazoles. Chem. Commun. 54, 4477–4480 (2018).

    Article  CAS  Google Scholar 

  119. Leng, J., Tang, W., Fang, W. Y., Zhao, C. & Qin, H. L. A simple protocol for the stereoselective construction of enaminyl sulfonyl fluorides. Org. Lett. 22, 4316–4321 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Li, C., Zheng, Y., Rakesh, K. P. & Qin, H.-L. But-3-ene-1,3-disulfonyl difluoride (BDF): a highly selective SuFEx clickable hub for the quick assembly of sultam-containing aliphatic sulfonyl fluorides. Chem. Commun. 56, 8075–8078 (2020).

    Article  CAS  Google Scholar 

  121. Zhang, Z.-W., Wang, S.-M., Fang, W.-Y., Lekkala, R. & Qin, H.-L. Protocol for stereoselective construction of highly functionalized dienyl sulfonyl fluoride warheads. J. Org. Chem. 85, 13721–13734 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, X., Moku, B., Leng, J., Rakesh, K. P. & Qin, H.-L. 2-Azidoethane-1-sulfonylfluoride (ASF): a versatile bis-clickable reagent for SuFEx and CuAAC click reactions. Eur. J. Org. Chem. 1763–1769 (2019).

  123. Xu, S. & Cui, S. SuFExable isocyanides for Ugi reaction: synthesis of sulfonyl fluoro peptides. Org. Lett. 23, 5197–5202 (2021).

    Article  CAS  PubMed  Google Scholar 

  124. Li, X.-R. et al. Palladacycle promoted asymmetric hydrophosphination of α,β-unsaturated sulfonyl fluorides. J. Organomet. Chem. 899, 120912 (2019).

    Article  CAS  Google Scholar 

  125. Moku, B., Fang, W.-Y., Leng, J., Kantchev, E. A. B. & Qin, H.-L. Rh(i)–diene-catalyzed addition of (hetero)aryl functionality to 1,3-dienylsulfonyl fluorides achieving exclusive regioselectivity and high enantioselectivity: generality and mechanism. ACS Catal. 9, 10477–10488 (2019).

    Article  CAS  Google Scholar 

  126. Moku, B. et al. Rh-catalyzed highly enantioselective synthesis of aliphatic sulfonyl fluorides. iScience 21, 695–705 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Fang, W.-Y., Wang, S.-M., Zhang, Z.-W. & Qin, H.-L. Clickable transformation of nitriles (RCN) to oxazolyl sulfonyl fluoride warheads. Org. Lett. 22, 8904–8909 (2020).

    Article  CAS  PubMed  Google Scholar 

  128. Talko, A., Antoniak, D. & Barbasiewicz, M. Directed ortho-metalation of arenesulfonyl fluorides and aryl fluorosulfates. Synthesis 51, 2278–2286 (2019).

    Article  CAS  Google Scholar 

  129. Parker, R. P. & Hofmann, C. M. Sulfonyl fluorides of amino azo dyestuffs. US Patent US2576037 (1947).

  130. Abdul Fattah, T., Saeed, A. & Albericio, F. Recent advances towards sulfur (vi) fluoride exchange (SuFEx) click chemistry. J. Fluor. Chem. 213, 87–112 (2018).

    Article  CAS  Google Scholar 

  131. Zhong, T., Chen, Z., Yi, J., Lu, G. & Weng, J. Recent progress in the synthesis of sulfonyl fluorides for SuFEx click chemistry. Chin. Chem. Lett. 32, 2736–2750 (2021).

    Article  CAS  Google Scholar 

  132. Niederprüm, H., Voss, P. & Beyl, V. Über Perfluoralkansulfonsäurearylester. Justus Liebigs Ann. Chem. 1973, 20–32 (1973).

    Article  Google Scholar 

  133. Anderson, K. W., Mendez-Perez, M., Priego, J. & Buchwald, S. L. Palladium-catalyzed amination of aryl nonaflates. J. Org. Chem. 68, 9563–9573 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Barluenga, J., Florentino, L., Aznar, F. & Valdés, C. Synthesis of polysubstituted olefins by Pd-catalyzed cross-coupling reaction of tosylhydrazones and aryl nonaflates. Org. Lett. 13, 510–513 (2011).

    Article  CAS  PubMed  Google Scholar 

  135. Shekhar, S., Dunn, T. B., Kotecki, B. J., Montavon, D. K. & Cullen, S. C. A general method for palladium-catalyzed reactions of primary sulfonamides with aryl nonaflates. J. Org. Chem. 76, 4552–4563 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Bennua-Skalmowski, B. & Vorbrüggen, H. A facile conversion of primary or secondary alcohols with n-perfluorobutane-sulfonyl fluoride/1,8-diazabicyclo[5.4.0]undec-7-ene into their corresponding fluorides. Tetrahedron Lett. 36, 2611–2614 (1995).

    Article  CAS  Google Scholar 

  137. Yin, J., Zarkowsky, D. S., Thomas, D. W., Zhao, M. M. & Huffman, M. A. Direct and convenient conversion of alcohols to fluorides. Org. Lett. 6, 1465–1468 (2004).

    Article  CAS  PubMed  Google Scholar 

  138. Nielsen, M. K., Ahneman, D. T., Riera, O. & Doyle, A. G. Deoxyfluorination with sulfonyl fluorides: navigating reaction space with machine learning. J. Am. Chem. Soc. 140, 5004–5008 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Nielsen, M. K., Ugaz, C. R., Li, W. & Doyle, A. G. PyFluor: a low-cost, stable, and selective deoxyfluorination reagent. J. Am. Chem. Soc. 137, 9571–9574 (2015). This paper provides an example of a sulfonyl fluoride engineered to act as a fluorinating reagent.

    Article  CAS  PubMed  Google Scholar 

  140. Zhang, C.-P., Chen, Q.-Y., Guo, Y., Xiao, J.-C. & Gu, Y.-C. Difluoromethylation and trifluoromethylation reagents derived from tetrafluoroethane β-sultone: synthesis, reactivity and applications. Coord. Chem. Rev. 261, 28–72 (2014).

    Article  CAS  Google Scholar 

  141. Chen, Q. & Zhu, S. Perfluoro-sulfonic and polyfluoro-sulfonic acids. 15. Generation of difluorocarbene and fluorosulfonyldifluoromethide ion from methyl α-fluorosulfonyldifluoroacetate. Sci. Sin. Ser. B 16, 561–568 (1986).

    Google Scholar 

  142. Chen, Q. & Wu, S. Perfluoro- and polyfluorosulfonic acids. 21. Synthesis of difluoromethyl esters using fluorosulfonyldifluoroacetic acid as a difluorocarbene precursor. J. Org. Chem. 54, 3023–3027 (1989).

    Article  CAS  Google Scholar 

  143. Tian, F. et al. A novel and highly efficient synthesis of gem-difluorocyclopropanes. Org. Lett. 2, 563–564 (2000).

    Article  CAS  PubMed  Google Scholar 

  144. Jiang, Y., Fang, W.-Y., Rakesh, K. P. & Qin, H.-L. Copper-catalyzed mild desulfonylation of vinyl sulfonyl molecules. Org. Chem. Front. 7, 1696–1702 (2020).

    Article  CAS  Google Scholar 

  145. Thomson, D. W. & Ehlers, G. F. L. Aromatic polysulfonates: preparation and properties. J. Polym. Sci. A Gen. Pap. 2, 1051–1056 (1964).

    Article  CAS  Google Scholar 

  146. Work, J. L. & Herweh, J. E. Thermal and mechanical properties of some polysulfonates. J. Polym. Sci. A-1 6, 2022–2030 (1968).

    Article  CAS  Google Scholar 

  147. Dong, J., Sharpless, K. B., Kwisnek, L., Oakdale, J. S. & Fokin, V. V. SuFEx-based synthesis of polysulfates. Angew. Chem. Int. Ed. 53, 9466–9470 (2014).

    Article  CAS  Google Scholar 

  148. Wang, H. et al. SuFEx-based polysulfonate formation from ethenesulfonyl fluoride-amine adducts. Angew. Chem. Int. Ed. 56, 11203–11208 (2017).

    Article  CAS  Google Scholar 

  149. Gao, B. et al. Bifluoride-catalysed sulfur(vi) fluoride exchange reaction for the synthesis of polysulfates and polysulfonates. Nat. Chem. 9, 1083–1088 (2017). This paper describes a powerful application of SuFEx reactivity applied to the synthesis of polymers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kulow, R. W., Wu, J. W., Kim, C. & Michaudel, Q. Synthesis of unsymmetrical sulfamides and polysulfamides via SuFEx click chemistry. Chem. Sci. 11, 7807–7812 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Brooks, K. et al. SuFEx postpolymerization modification kinetics and reactivity in polymer brushes. Macromolecules 51, 297–305 (2018).

    Article  Google Scholar 

  152. Yatvin, J., Brooks, K. & Locklin, J. SuFEx on the surface: a flexible platform for postpolymerization modification of polymer brushes. Angew. Chem. Int. Ed. 54, 13370–13373 (2015). This is an impressive example of using SuFEx reactivity to modify polymer surfaces, again exploiting the combination of silyl-activated nucleophiles and sulfonyl fluoride electrophiles.

    Article  CAS  Google Scholar 

  153. Brooks, K. et al. Multifunctional surface manipulation using orthogonal click chemistry. Langmuir 32, 6600–6605 (2016).

    Article  Google Scholar 

  154. Gahtory, D. et al. Quantitative and orthogonal formation and reactivity of SuFEx platforms. Chem. Eur. J. 24, 10550–10556 (2018).

    Article  CAS  PubMed  Google Scholar 

  155. Liu, W., Dong, Y., Zhang, S., Wu, Z. & Chen, H. A rapid one-step surface functionalization of polyvinyl chloride by combining click sulfur(vi)-fluoride exchange with benzophenone photochemistry. Chem. Commun. 55, 858–861 (2019).

    Article  CAS  Google Scholar 

  156. Dong, Y. et al. “Click-chemical” modification of cellulose acetate nanofibers: a versatile platform for biofunctionalization. J. Mater. Chem. B 6, 4579–4582 (2018).

    Article  CAS  PubMed  Google Scholar 

  157. Park, S. et al. SuFEx in metal–organic frameworks: versatile postsynthetic modification tool. ACS Appl. Mater. Interfaces 10, 33785–33789 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Liu, S., Cao, Y., Wu, Z. & Chen, H. Reactive films fabricated using click sulfur(vi)–fluoride exchange reactions via layer-by-layer assembly. J. Mater. Chem. B 8, 5529–5534 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. Yatvin, J., Brooks, K. & Locklin, J. SuFEx click: new materials from SOxF and silyl ethers. Chem. Eur. J. 22, 16348–16354 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Xu, L., Wu, P. & Dong, J. in Synthetic Polymer Chemistry: Innovations and Outlook Ch. 1 (eds Zhao, Z. et al.) 1–31 (Royal Society of Chemistry, 2019).

  161. Shen, C. et al. Stabilizing formamidinium lead iodide perovskite by sulfonyl-functionalized phenethylammonium salt via crystallization control and surface passivation. Sol. RRL 4, 2000069 (2020).

    Article  CAS  Google Scholar 

  162. Siegel, D. J. et al. Molecular design principles of ionic liquids with a sulfonyl fluoride moiety. N. J. Chem. 45, 2443–2452 (2021).

    Article  CAS  Google Scholar 

  163. Myers, D. K. & Kemp, A. Inhibition of esterases by the fluorides of organic acids. Nature 173, 33–34 (1954).

    Article  CAS  PubMed  Google Scholar 

  164. Gold, A. M. & Fahrney, D. Sulfonyl fluorides as inhibitors of esterases. II. Formation and reactions of phenylmethanesulfonyl α-chymotrypsin. Biochemistry 3, 783–791 (1964).

    Article  CAS  PubMed  Google Scholar 

  165. Gold, A. M. Sulfonyl fluorides as inhibitors of esterases. III. Identification of serine as the site of sulfonylation in phenylmethanesulfonyl α-chymotrypsin. Biochemistry 4, 897–901 (1965).

    Article  CAS  PubMed  Google Scholar 

  166. Baker, B. R. & Lourens, G. J. Irreversible enzyme inhibitors. CV.1,2 Differential irreversible inhibition of vertebrate dihydrofolic reductases by derivatives of 4,6-diamino-1,2-dihydro-2,2-dimethyl-1-phenyl-s-triazines substituted with a terminal sulfonyl fluoride. J. Med. Chem. 10, 1113–1122 (1967).

    Article  CAS  PubMed  Google Scholar 

  167. Jones, L. H. in Annual Reports in Medicinal Chemistry Vol. 56 Ch. 4 (eds Ward, R. A. & Grimster, N. P.) 95–134 (Academic, 2020).

  168. Pal, P. K., Wechter, W. J. & Colman, R. F. Affinity labeling of the inhibitory DPNH site of bovine liver glutamate dehydrogenase by 5′-fluorosulfonylbenzoyl adenosine. J. Biol. Chem. 250, 8140–8147 (1975).

    Article  CAS  PubMed  Google Scholar 

  169. Colman, R. F. Affinity labeling of purine nucleotide sites in proteins. Annu. Rev. Biochem. 52, 67–91 (1983).

    Article  CAS  PubMed  Google Scholar 

  170. Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gu, C. et al. Chemical proteomics with sulfonyl fluoride probes reveals selective labeling of functional tyrosines in glutathione transferases. Chem. Biol. 20, 541–548 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Zhao, Q. et al. Broad-spectrum kinase profiling in live cells with lysine-targeted sulfonyl fluoride probes. J. Am. Chem. Soc. 139, 680–685 (2017). An impressive application of multifunctional sulfonyl fluoride reagents to target specific lysine residues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yan, X. et al. Europium-labeled activity-based probe through click chemistry: absolute serine protease quantification using 153Eu isotope dilution ICP/MS. Angew. Chem. Int. Ed. 51, 3358–3363 (2012).

    Article  CAS  Google Scholar 

  174. Jones, L. H. & Kelly, J. W. Structure-based design and analysis of SuFEx chemical probes. RSC Med. Chem. 11, 10–17 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zelli, R., Tommasone, S., Dumy, P., Marra, A. & Dondoni, A. A click ligation based on SuFEx for the metal-free synthesis of sugar and iminosugar clusters. Eur. J. Org. Chem. 5102–5116 (2016).

    Article  Google Scholar 

  176. Yang, B. et al. Proximity-enhanced SuFEx chemical cross-linker for specific and multitargeting cross-linking mass spectrometry. Proc. Natl Acad. Sci. USA 115, 11162–11167 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Miller, P. W., Long, N. J., Vilar, R. & Gee, A. D. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew. Chem. Int. Ed. 47, 8998–9033 (2008).

    Article  CAS  Google Scholar 

  178. Schirrmacher, R. et al. Small prosthetic groups in 18F-radiochemistry: useful auxiliaries for the design of 18F-PET tracers. Semin. Nucl. Med. 47, 474–492 (2017).

    Article  PubMed  Google Scholar 

  179. Inkster, J. A. H. et al. Sulfonyl fluoride-based prosthetic compounds as potential 18F labelling agents. Chem. Eur. J. 18, 11079–11087 (2012).

    Article  CAS  PubMed  Google Scholar 

  180. Matesic, L. et al. Ascertaining the suitability of aryl sulfonyl fluorides for [18F]radiochemistry applications: a systematic investigation using microfluidics. J. Org. Chem. 78, 11262–11270 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Wang, J. & van Dam, R. M. High-efficiency production of radiopharmaceuticals via droplet radiochemistry: a review of recent progress. Mol. Imaging 19, 1536012120973099 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Zhou, D. et al. Preliminary evaluation of a novel 18F-labeled PARP-1 ligand for PET imaging of PARP-1 expression in prostate cancer. Nucl. Med. Biol. 66, 26–31 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Eby, R. & Schuerch, C. The use of 1-O-tosyl-d-glucopyranose derivatives in α-d-glucoside synthesis. Carbohydr. Res. 34, 79–90 (1974).

    Article  CAS  Google Scholar 

  184. Ametamey, S. M., Honer, M. & Schubiger, P. A. Molecular imaging with PET. Chem. Rev. 108, 1501–1516 (2008).

    Article  CAS  PubMed  Google Scholar 

  185. Zhang, B. et al. Synthesis, bioconjugation and stability studies of [18F]ethenesulfonyl fluoride. J. Label. Compd. Radiopharm. 61, 847–856 (2018). This shows how ESF, an important reagent for the introduction of sulfonyl fluorides, can be adapted to 18F-labelling.

    Article  CAS  Google Scholar 

  186. Zhang, B. et al. [18F]ethenesulfonyl fluoride as a practical radiofluoride relay reagent. Chem. Eur. J. 25, 7613–7617 (2019).

    Article  CAS  PubMed  Google Scholar 

  187. Pascali, G. et al. Sulfur–fluorine bond in PET radiochemistry. EJNMMI Radiopharm. Chem. 2, 9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Montanino, M., Passerini, S. & Appetecchi, G. B. in Rechargeable Lithium Batteries (ed. Franco, A.) 73–116 (Woodhead, 2015).

  189. Li, Q., Chen, J., Fan, L., Kong, X. & Lu, Y. Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy Environ. 1, 18–42 (2016).

    Article  Google Scholar 

  190. Razzini, G., Rovellini, S., Alessandrini, F., Di Pietro, B. & Scrosati, B. The lithium-sulfuryl chloride battery: discharge behaviour. J. Power Sources 5, 263–271 (1980).

    Article  CAS  Google Scholar 

  191. Fu, X. et al. Sulfuryl chloride as a functional additive towards dendrite-free and long-life Li metal anodes. J. Mater. Chem. A 7, 25003–25009 (2019).

    Article  CAS  Google Scholar 

  192. Lee, S.-Y., Ueno, K. & Angell, C. A. Lithium salt solutions in mixed sulfone and sulfone-carbonate solvents: a Walden plot analysis of the maximally conductive compositions. J. Phys. Chem. C. 116, 23915–23920 (2012).

    Article  CAS  Google Scholar 

  193. Xue, L., Ueno, K., Lee, S.-Y. & Angell, C. A. Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode. J. Power Sources 262, 123–128 (2014).

    Article  CAS  Google Scholar 

  194. Che, Y. et al. Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive. J. Energy Chem. 52, 361–371 (2021).

    Article  Google Scholar 

  195. Xue, W. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4V class lithium-metal batteries. Energy Environ. Sci. 13, 212–220 (2020).

    Article  CAS  Google Scholar 

  196. Conte, L., Gambaretto, G., Caporiccio, G., Alessandrini, F. & Passerini, S. Perfluoroalkanesulfonylimides and their lithium salts: synthesis and characterisation of intermediates and target compounds. J. Fluor. Chem. 125, 243–252 (2004).

    Article  CAS  Google Scholar 

  197. Jin, Z., Xie, K. & Hong, X. Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator. RSC Adv. 3, 8889–8898 (2013).

    Article  CAS  Google Scholar 

  198. Zhou, H. et al. Introduction of a crystalline, shelf-stable reagent for the synthesis of sulfur(vi) fluorides. Org. Lett. 20, 812–815 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Guo, T. et al. A new portal to SuFEx click chemistry: a stable fluorosulfuryl imidazolium salt emerging as an “F−SO2+” donor of unprecedented reactivity, selectivity, and scope. Angew. Chem. Int. Ed. 57, 2605–2610 (2018).

    Article  CAS  Google Scholar 

  200. Börgel, J. & Ritter, T. Late-stage functionalization. Chem 6, 1877–1887 (2020).

    Article  Google Scholar 

  201. Brzozowski, M., O’Brien, M., Ley, S. V. & Polyzos, A. Flow chemistry: intelligent processing of gas–liquid transformations using a tube-in-tube reactor. Acc. Chem. Res. 48, 349–362 (2015).

    Article  CAS  PubMed  Google Scholar 

  202. Malet-Sanz, L., Madrzak, J., Ley, S. V. & Baxendale, I. R. Preparation of arylsulfonyl chlorides by chlorosulfonylation of in situ generated diazonium salts using a continuous flow reactor. Org. Biomol. Chem. 8, 5324–5332 (2010).

    Article  CAS  PubMed  Google Scholar 

  203. Liu, Z. et al. SuFEx click chemistry enabled late-stage drug functionalization. J. Am. Chem. Soc. 140, 2919–2925 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Mortenson, D. E. et al. “Inverse drug discovery” strategy to identify proteins that are targeted by latent electrophiles as exemplified by aryl fluorosulfates. J. Am. Chem. Soc. 140, 200–210 (2018).

    Article  CAS  PubMed  Google Scholar 

  205. Wang, N. et al. genetically encoding fluorosulfate-l-tyrosine to react with lysine, histidine, and tyrosine via SuFEx in proteins in vivo. J. Am. Chem. Soc. 140, 4995–4999 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Martín-Gago, P. & Olsen, C. A. Arylfluorosulfate-based electrophiles for covalent protein labeling: a new addition to the arsenal. Angew. Chem. Int. Ed. 58, 957–966 (2019).

    Article  Google Scholar 

  207. Kassick, A. J. et al. SuFEx-based strategies for the preparation of functional particles and cation exchange resins. Chem. Commun. 55, 3891–3894 (2019).

    Article  CAS  Google Scholar 

  208. Xu, H. et al. DNA-encoded libraries: aryl fluorosulfonates as versatile electrophiles enabling facile on-DNA Suzuki, Sonogashira, and Buchwald reactions. Adv. Sci. 6, 1901551 (2019).

    Article  CAS  Google Scholar 

  209. Zheng, Q. et al. Sulfur [18F]fluoride exchange click chemistry enabled ultrafast late-stage radiosynthesis. J. Am. Chem. Soc. 143, 3753–3763 (2021).

    Article  CAS  PubMed  Google Scholar 

  210. Li, S., Wu, P., Moses, J. E. & Sharpless, K. B. Multidimensional SuFEx click chemistry: sequential sulfur(vi) fluoride exchange connections of diverse modules launched from an SOF4 hub. Angew. Chem. Int. Ed. 56, 2903–2908 (2017). An impressive demonstration of how simple nucleophiles can be combined using multi-reactive electrophilic S-F hubs to construct a range of S(vi)-functional groups.

    Article  CAS  Google Scholar 

  211. Liu, F. et al. Biocompatible SuFEx click chemistry: thionyl tetrafluoride (SOF4)-derived connective hubs for bioconjugation to DNA and proteins. Angew. Chem. Int. Ed. 58, 8029–8033 (2019).

    Article  CAS  Google Scholar 

  212. Kitamura, S. et al. Sulfur(vi) fluoride exchange (SuFEx)-enabled high-throughput medicinal chemistry. J. Am. Chem. Soc. 142, 10899–10904 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Michael C. Willis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Chemistry thanks H.-L. Qin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Bactericidal

Having the ability to kill bacteria, as compared to ‘bacteriostatic’ which inhibits bacterial growth or reproduction.

LD50

Median lethal dose, the dose required to kill half of the sample population, expressed as the mass of chemical administered per body mass of test subject.

Click reactions

Thermodynamically favoured processes of joining modular building blocks, which are highly selective, high-yielding, operationally simple and insensitive to oxygen and water.

Ionic liquids

Salts that are liquid at temperatures below 100 °C.

Activity-based protein probes

Small molecules composed of a functional group capable of binding with target proteins, and a second reactive site (reporter) for protein analysis or transformation.

Positron emission tomography

(PET). An imaging technique used in nuclear medicine that measures the metabolic activity of the cells of body tissues, through the administration of a radiotracer.

Passivation

Formation of a coating on a material that is more inert than the material itself.

Ionomer

A polymer that consists of electrically neutral repeating units and a fraction of ionized units distributed along the polymer backbone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, T.SB., Willis, M.C. Sulfonyl fluorides as targets and substrates in the development of new synthetic methods. Nat Rev Chem 6, 146–162 (2022). https://doi.org/10.1038/s41570-021-00352-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-021-00352-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing