Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control

Abstract

Sodium–glucose cotransporter 2 (SGLT2) inhibitors are effective antidiabetic therapies in patients with type 2 diabetes mellitus and are associated with improved glycaemic control as well as with reductions in body mass and blood pressure. In large cardiovascular outcome trials in patients with diabetes, SGLT2 inhibitors improve cardiovascular and renal outcomes, including hospitalization for heart failure, with this benefit extending to patients without diabetes who have heart failure with reduced ejection fraction. The possible mechanisms of benefit are being extensively investigated because they are unlikely to be related to improved glycaemic control. Early natriuresis with a reduction in plasma volume, a consequent rise in haematocrit, improved vascular function, a reduction in blood pressure and changes in tissue sodium handling are all likely to have a role. Additional mechanisms of SGLT2 inhibitors that might be beneficial include a reduction in adipose tissue-mediated inflammation and pro-inflammatory cytokine production, a shift towards ketone bodies as the metabolic substrate for the heart and kidneys, reduced oxidative stress, lowered serum uric acid level, reduced glomerular hyperfiltration and albuminuria, and suppression of advanced glycation end-product signalling. Further outcome trials and mechanistic studies, including in patients with heart failure with preserved ejection fraction or non-diabetic kidney disease, might identify other possible mechanisms of benefit of SGLT2-inhibitor therapy.

Key points

  • Sodium–glucose cotransporter 2 (SGLT2) inhibitors improve glycaemic control by blocking glucose reabsorption in the proximal convoluted tubule of the kidney and by increasing glycosuria.

  • Large randomized trials of SGLT2 inhibitors report reductions in cardiovascular events (particularly hospitalization for heart failure) in patients with type 2 diabetes mellitus and in those with heart failure with reduced ejection fraction with or without diabetes.

  • The cardiovascular benefits manifest rapidly and are unlikely to be related to the improvement in glycaemic control.

  • Early natriuresis, reductions in plasma volume, improved vascular resistance, reduced blood pressure and changes in tissue sodium handling might underlie the rapid reduction in the risk of heart failure.

  • A shift towards ketone body metabolism, reduced serum uric acid levels, reduced adipose tissue-mediated inflammation, decreased oxidative stress and suppression of damage mediated by advanced glycation end-products might also provide benefit.

  • Ongoing outcome clinical trials in other groups of patients and more detailed mechanistic studies will shed further light on the mechanisms of cardiovascular benefit with SGLT2 inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glucose reabsorption in the kidney.
Fig. 2: Suggested mechanisms of the cardiovascular and renal benefits of SGLT2 inhibitors.
Fig. 3: Schema of integrated effects of SGLT2 inhibitors likely to produce cardiovascular and renal benefits.

Similar content being viewed by others

References

  1. Liu, L., Simon, B., Shi, J., Malhi, A. K. & Eisen, H. J. Impact of diabetes mellitus on risk of cardiovascular disease and all-cause mortality: evidence on health outcomes and anti-diabetic treatment in United States adults. World J. Diabetes 7, 449–461 (2016).

    Google Scholar 

  2. de Mattos Matheus, A. S. et al. Impact of diabetes on cardiovascular disease: an update. Int. J. Hypertens. 2013, 653789 (2013).

    Google Scholar 

  3. Rivellese, A. A., Riccardi, G. & Vaccaro, O. Cardiovascular risk in women with diabetes. Nutr. Metab. Cardiovasc. Res. 20, 474–480 (2010).

    CAS  Google Scholar 

  4. Wu, B. et al. Understanding CKD among patients with T2DM: prevalence, temporal trends, and treatment patterns: NHANES 2007-2012. BMJ Open Diabetes Res. Care 4, e000154 (2016).

    Google Scholar 

  5. National Kidney Foundation. KDOQI clinical practice guideline for diabetes and CKD: 2012 update. Am. J. Kidney Dis. 60, 850–886 (2012).

    Google Scholar 

  6. Pouwels, K. B. & van Grootheest, K. The rosiglitazone decision process at FDA and EMA. What should we learn? Int. J. Risk Saf. Med. 24, 73–80 (2012).

    Google Scholar 

  7. Buse, J. B. et al. 2019 update to: management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 63, 221–228 (2020).

    Google Scholar 

  8. Inzucchi, S. E. et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab. Vasc. Dis. Res. 12, 90–100 (2015).

    CAS  Google Scholar 

  9. Holman, R. R., Paul, S. K., Bethel, M. A., Matthews, D. R. & Neil, A. W. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 359, 1577–1589 (2008).

    CAS  Google Scholar 

  10. Hayward, R. A. et al. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 372, 2197–2206 (2015).

    CAS  Google Scholar 

  11. Inzucchi, S. E. et al. Improvement in cardiovascular outcomes with empagliflozin is independent of glycemic control. Circulation 138, 1904–1907 (2018).

    Google Scholar 

  12. Ryan, G. Dipeptidyl peptidase-4 inhibitor use in patients with type 2 diabetes and cardiovascular disease or risk factors. Postgrad. Med. 127, 842–854 (2015).

    Google Scholar 

  13. Scheen, A. J. Cardiovascular effects of new oral glucose-lowering agents DPP4 and SGLT-2 inhibitors. Circ. Res. 122, 1439–1459 (2018).

    CAS  Google Scholar 

  14. McMurray, J. J. V. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N. Engl. J. Med. 381, 1995–2008 (2019).

    CAS  Google Scholar 

  15. Himsworth, H. P. The relation of glycosuria to glycaemia and the determination of the renal threshold for glucose. Biochem. J. 25, 1128–1146 (1931).

    CAS  Google Scholar 

  16. Farber, S. J., Berger, E. Y. & Earle, D. P. Effect of diabetes and insulin on the maximum capacity of the renal tubules to reabsorb glucose. J. Clin. Invest. 30, 125–129 (1951).

    CAS  Google Scholar 

  17. Wright, E. M. et al. “Active” sugar transport in eukaryotes. J. Exp. Biol. 196, 197–212 (1994).

    CAS  Google Scholar 

  18. Bakris, G. L., Fonseca, V. A., Sharma, K. & Wright, E. M. Renal sodium-glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int. 75, 1272–1277 (2009).

    CAS  Google Scholar 

  19. Hediger, M. A., Coady, M. J., Ikeda, T. S. & Wright, E. M. Expression cloning and cDNA sequencing of the Na+/glucose transporter. Nature 330, 379–381 (1987).

    CAS  Google Scholar 

  20. Wright, E. M., Loo, D. D. F., Hirayama, B. A. & Turk, E. Surprising versatility of the Na+-glucose cotransporters: SLC5. Physiology 19, 370–376 (2004).

    CAS  Google Scholar 

  21. Wright, E. M., Loo, D. D. F. & Hirayama, B. A. Biology of human sodium glucose transporters. Physiol. Rev. 91, 733–794 (2011).

    CAS  Google Scholar 

  22. Liu, J. J., Lee, T. W. & DeFronzo, R. A. Why do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans? Diabetes 61, 2199–2204 (2012).

    CAS  Google Scholar 

  23. Reig, T. et al. Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am. J. Physiol. Ren. Physiol. 306, F188–F193 (2014).

    Google Scholar 

  24. Wood, I. S. & Trayhurn, P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br. J. Nutr. 89, 3–9 (2003).

    CAS  Google Scholar 

  25. Nauck, M. A. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des. Devel. Ther. 8, 1335–1380 (2014).

    Google Scholar 

  26. Ehrenkranz, J. R., Lewis, N. G., Kahn, C. R. & Roth, J. Plorizin: a review. Diabetes Metab. Res. Rev. 21, 31–38 (2005).

    CAS  Google Scholar 

  27. Rossetti, L., Smith, D., Shulman, G. I., Papchristou, D. & DeFronzo, R. A. Correction of hyperglycemia with phlorizin normalizes tissue sensitivity to insulin in diabetic rats. J. Clin. Invest. 79, 1510–1515 (1987).

    CAS  Google Scholar 

  28. Scheen, A. J. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus. Drugs 75, 33–59 (2015).

    CAS  Google Scholar 

  29. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 372, 2117–2128 (2015).

    Google Scholar 

  30. Neal, B. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 377, 644–657 (2017).

    CAS  Google Scholar 

  31. Wiviott, S. D. et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 380, 347–357 (2019).

    CAS  Google Scholar 

  32. Perkovic, V. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N. Engl. J. Med. 380, 2295–2306 (2019).

    CAS  Google Scholar 

  33. Zelniker, T. A. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393, 31–39 (2019).

    CAS  Google Scholar 

  34. Cannon, C. P. et al. Design and baseline characteristics of the evaluation of ertugliflozin efficacy and safety cardiovascular outcomes trial (VERTIS-CV). Am. Heart J. 206, 11–23 (2018).

    CAS  Google Scholar 

  35. Cannon, C. P. et al. Evaluating the effects of canagliflozin on cardiovascular and renal events in patients with type 2 diabetes mellitus and chronic kidney disease according to baseline HbA1c, including those with HbA1c <7%: results from the CREDENCE trial. Circulation 141, 407–410 (2020).

    Google Scholar 

  36. Vasilakou, D. et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159, 262–274 (2013).

    Google Scholar 

  37. Fujita, Y. & Inagaki, N. Renal sodium glucose cotransporter 2 inhibitors as a novel therapeutic approach to treatment of type 2 diabetes: clinical data and mechanism of action. J. Diabetes Investig. 5, 265–275 (2014).

    CAS  Google Scholar 

  38. Ridderstrale, M. et al. Comparison of empagliflozin and glimperidie as add-on to metformin in patients with type 2 diabetes: a 104 week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2, 691–700 (2014).

    Google Scholar 

  39. Cefalu, W. T. et al. Efficacy and safety of canagliflozin versus glimperide in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52 week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 382, 941–950 (2013).

    CAS  Google Scholar 

  40. Del Prato, S. et al. Long-term glycaemic response and tolerability of dapagliflozin versus sulphonylurea as add-on therapy to metformin in patients with type 2 diabetes: 4-year data. Diabetes Obes. Metab. 17, 581–590 (2015).

    Google Scholar 

  41. Rosenstock, J. et al. Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycaemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care 37, 1815–1823 (2014).

    CAS  Google Scholar 

  42. Wilding, J. P. et al. Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann. Intern. Med. 156, 405–415 (2012).

    Google Scholar 

  43. Abdul-Ghani, M. A., Norton, L. & DeFronzo, R. A. Efficacy and safety of SGLT2 inhibitors in the treatment of type 2 diabetes mellitus. Curr. Diab. Rep. 12, 230–238 (2012).

    CAS  Google Scholar 

  44. Storgaard, H. et al. Benefits and harms of sodium-glucose co-transporter 2 inhibitors in patients with type 2 diabetes: a systematic review and meta-analysis. PLoS One 11, e0166125 (2016).

    Google Scholar 

  45. Rajeev, S. P., Cuthbertson, D. J. & Wilding, J. P. Energy balance and metabolic changes with sodium-glucose co-transporter 2 inhibition. Diabetes Obes. Metab. 18, 125–134 (2016).

    CAS  Google Scholar 

  46. Bolinder, J. et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J. Clin. Endocrinol. Metab. 97, 1020–1031 (2012).

    CAS  Google Scholar 

  47. Schork, A. et al. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc. Diabetol. 18, 46 (2019).

    Google Scholar 

  48. Inoue, H. et al. Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, reduces bodyweight and fat mass, but not muscle mass, in Japanese type 2 diabetes patients treated with insulin: a randomized clinical trial. J. Diabetes Invest. 10, 1012–1021 (2019).

    CAS  Google Scholar 

  49. Oliva, R. V. & Bakris, G. L. Blood pressure effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors. J. Am. Soc. Hypertens. 8, 330–339 (2014).

    CAS  Google Scholar 

  50. Burns, K. D. & Cherney, D. Renal angiotensinogen and sodium-glucose cotransporter-2 inhibition: insights from experimental diabetic kidney disease. Am. J. Nephrol. 49, 328–330 (2019).

    Google Scholar 

  51. Zhao, Y. et al. Effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on serum uric acid level: a meta-analysis of randomized controlled trials. Diabetes Obes. Metab. 20, 458–462 (2018).

    CAS  Google Scholar 

  52. Barnett, A. H. et al. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: a randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 2, 369–384 (2014).

    CAS  Google Scholar 

  53. Lovshin, J. A. & Gilbert, R. E. Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective? Curr. Hypertens. Rep. 17, 40 (2015).

    Google Scholar 

  54. Scheen, A. J. Effects of reducing blood pressure on cardiovascular outcomes and mortality in patients with type 2 diabetes: focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Res. Clin. Pract. 121, 204–214 (2016).

    CAS  Google Scholar 

  55. Lambers Heersprink, H. J., de Zeeuw, D., Wie, L., Leslie, B. & List, J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes. Metab. 15, 853–862 (2013).

    Google Scholar 

  56. Kannenkeril, D. et al. Tissue sodium content in patients with type 2 diabetes mellitus. J. Diabetes Complications 33, 485–489 (2019).

    Google Scholar 

  57. Karg, M. V. et al. SGLT-2 inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovasc. Diabetol. 17, 5 (2018).

    CAS  Google Scholar 

  58. Schneider, M. P. et al. Skin sodium concentration correlates with left ventricular hypertrophy in CKD. J. Am. Soc. Nephrol. 28, 1867–1876 (2017).

    CAS  Google Scholar 

  59. Hallow, K. M., Helmlinger, G., Greasley, P. J., McMurray, J. J. V. & Boulton, D. W. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes. Metab. 20, 479–487 (2018).

    CAS  Google Scholar 

  60. Kohler, S., Zeller, C., Iliev, H. & Kaspers, S. Safety and tolerability of empagliflozin in patients with type 2 diabetes: pooled analysis of phase I–III clinical trials. Adv. Ther. 34, 1707–1726 (2017).

    CAS  Google Scholar 

  61. Fioretto, P. et al. Long-term safety of dapagliflozin in older patients with type 2 diabetes mellitus: a pooled analysis of phase IIb/III studies. Drugs Aging 33, 511–522 (2016).

    CAS  Google Scholar 

  62. Inzucchi, S. E. et al. How does empagliflozin reduce cardiovascular mortality? Insights from a mediation analysis of the EMPA-REG OUTCOME Trial. Diabetes Care 41, 356–363 (2018).

    CAS  Google Scholar 

  63. Swedberg, K. et al. Treatment of anemia with darbepoetin alfa in systolic heart failure. N. Engl. J. Med. 368, 1210–1219 (2013).

    CAS  Google Scholar 

  64. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    CAS  Google Scholar 

  65. Yale, J. F. et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes. Metab. 15, 463–473 (2013).

    CAS  Google Scholar 

  66. Kohan, D. E., Fioretto, P., Tang, W. & List, J. F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control. Kidney Int. 85, 962–971 (2014).

    CAS  Google Scholar 

  67. Bae, J. H. et al. Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Sci. Rep. 9, 13009 (2019).

    Google Scholar 

  68. Bank, N. & Aynedjian, H. S. Progressive increases in luminal glucose stimulate proximal sodium absorption in normal and diabetic rats. J. Clin. Invest. 86, 309–316 (1990).

    CAS  Google Scholar 

  69. Pollock, C. A., Lawrence, J. R. & Field, M. J. Tubular sodium handling and tubuloglomerular feedback in experimental diabetes mellitus. Am. J. Physiol. 260, F946–F952 (1991).

    CAS  Google Scholar 

  70. Vestri, S. et al. Changes in sodium or glucose filtration rate modulate expression of glucose transporters in renal proximal tubular cells of rat. J. Membr. Biol. 182, 105–112 (2001).

    CAS  Google Scholar 

  71. Vallon, V., Richter, K., Blantz, R. C., Thomson, S. & Osswald, H. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J. Am. Soc. Nephrol. 10, 2569–2576 (1999).

    CAS  Google Scholar 

  72. Zatz, R. et al. Prevention of diabetic glomerulopathy by pharmacological amelioration of glomerular capillary hypertension. J. Clin. Invest. 77, 1925–1930 (1986).

    CAS  Google Scholar 

  73. Thomson, S. C. et al. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302, R75–83 (2012).

    CAS  Google Scholar 

  74. Holtkamp, F. A. et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 80, 282–287 (2011).

    CAS  Google Scholar 

  75. Perlman, A. et al. Acute renal failure with sodium-glucose cotransporter-2 inhibitors: analysis of the FDA adverse event report system database. Nutr. Metab. Cardiovasc. Dis. 27, 1108–1113 (2017).

    CAS  Google Scholar 

  76. Scheen, A. J. An update on the safety of SGLT2 inhibitors. Exp. Opin. Drug Saf. 18, 295–311 (2019).

    CAS  Google Scholar 

  77. Fukuda, T. et al. Ipragliflozin reduces epicardial fat accumulation in non-obese type 2 diabetic patients with visceral obesity: a pilot study. Diabetes Ther. 8, 851–861 (2017).

    CAS  Google Scholar 

  78. Yagi, S. et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol. Metab. Syndr. 9, 78 (2017).

    Google Scholar 

  79. Xu, L. et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 20, 137–149 (2017).

    Google Scholar 

  80. Naznin, F. et al. Canagliflozin, a sodium-glucose co-transporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur. J. Pharmacol. 794, 37–44 (2017).

    CAS  Google Scholar 

  81. Jeong, J.-W. et al. Echocardiographic epicardial fat thickness and coronary artery disease. Circ. J. 71, 536–539 (2007).

    Google Scholar 

  82. Iacobellis, G. & Barbaro, G. Epicardial adipose tissue feeding and overfeeding the heart. Nutrition 59, 1–6 (2019).

    CAS  Google Scholar 

  83. Grulich, S. et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction. Circulation 126, 2324–2334 (2012).

    Google Scholar 

  84. Camarena, V. et al. Novel atherogenic pathways from the differential transcriptome analysis of diabetic epicardial adipose tissue. Nutr. Metab. Cardiovasc. Dis. 27, 739–750 (2017).

    CAS  Google Scholar 

  85. Sato, T. et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc. Diabetol. 17, 6 (2018).

    CAS  Google Scholar 

  86. Diaz-Rodriguez, E. et al. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc. Res. 114, 336–346 (2018).

    CAS  Google Scholar 

  87. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02235298 (2020).

  88. Ferrannini, E. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J. Clin. Invest. 124, 499–508 (2014).

    CAS  Google Scholar 

  89. Ferrannini, E. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 65, 1190–1195 (2016).

    CAS  Google Scholar 

  90. DeFronzo, R. A. Banting lecture: from the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773–795 (2009).

    CAS  Google Scholar 

  91. McGarry, J. D. & Foster, D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu. Rev. Biochem. 49, 395–420 (1980).

    CAS  Google Scholar 

  92. Cahill, G. F. Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).

    CAS  Google Scholar 

  93. Ferrannini, E., Mark, M. & Mayoux, E. Cardiovascular protection in the EMPA-REG OUTCOME trial: a ‘thrifty substrate’ hypothesis. Diabetes Care 39, 1108–1114 (2016).

    Google Scholar 

  94. Cotter, D. G., Schugar, R. C. & Crawford, P. A. Ketone body metabolism and cardiovascular disease. Am. J. Physiol. Heart Circ. Physiol. 304, H1060–H1076 (2013).

    CAS  Google Scholar 

  95. Bays, H., Mandarino, L. & DeFronzo, R. A. Role of the adipocyte, free fatty acids, and ectopic fat in pathogenesis of type 2 diabetes mellitus: peroxisomal proliferator-activated receptor agonists provide a rational therapeutic approach. J. Clin. Endocrinol. Metab. 89, 463–478 (2004).

    CAS  Google Scholar 

  96. Levelt, E. et al. Relationship between left ventricular structural and metabolic remodeling in type 2 diabetes. Diabetes 65, 44–52 (2016).

    CAS  Google Scholar 

  97. Lonardo, A., Nascimbeni, F., Mantovani, A. & Targher, G. Hypertension, diabetes, atherosclerosis and NASH: cause or consequence? J. Hepatol. 68, 335–352 (2018).

    Google Scholar 

  98. Targher, G., Day, C. P. & Bonara, E. Risk of cardiovascular disease in patients with non-alcoholic fatty liver disease. N. Engl. J. Med. 363, 1341–1350 (2010).

    CAS  Google Scholar 

  99. Eriksson, J. W. et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia 61, 1923–1934 (2018).

    CAS  Google Scholar 

  100. Kuchay, M. S. et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and non-alcoholic fatty liver disease: a randomized controlled trial (E-LIFT trial). Diabetes Care 41, 1801–1808 (2018).

    CAS  Google Scholar 

  101. Sattar, N., Fitchett, D., Hantel, S., George, J. T. & Zinman, B. Empagliflozin is associated with improvements in live enzymes potentially consistent with reductions in liver fat: results from randomised trials including EMPA-REG OUTCOME trial. Diabetologia 61, 2155–2163 (2018).

    CAS  Google Scholar 

  102. Leiter, L. A. et al. Effect of canagliflozin on liver function tests in patients with type 2 diabetes. Diabetes Metab. 42, 25–32 (2016).

    CAS  Google Scholar 

  103. Scheen, A. J. Beneficial effects of SGLT2 inhibitors on fatty liver in type 2 diabetes: a common comorbidity associated with severe complications. Diabetes Metab. 45, 213–223 (2019).

    CAS  Google Scholar 

  104. Chilton, R. et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes. Metab. 17, 1180–1193 (2015).

    CAS  Google Scholar 

  105. Ott, C. et al. A randomised study of the impact of the SGLT2 inhibitor dapagliflozin on microvascular and macrovascular circulation. Cardiovasc. Diabetol. 16, 26 (2017).

    Google Scholar 

  106. Striepe, K. et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation 136, 1167–1169 (2017).

    CAS  Google Scholar 

  107. Solini, A. et al. Dapagliflozin acutely improves endothelial dysfunction, reduces aortic stiffness and renal resistive index in type 2 diabetic patients: a pilot study. Cardiovasc. Diabetol. 16, 138 (2017).

    Google Scholar 

  108. Li, H. et al. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 197, 46–55 (2018).

    CAS  Google Scholar 

  109. Scheen, A. J. Effect of SGLT2 inhibitors on the sympathetic nervous system and blood pressure. Curr. Cardiol. Rep. 21, 70 (2019).

    Google Scholar 

  110. Bailey, C. J. Uric acid and the cardio-renal effects of SGLT2 inhibitors. Diabetes Obes. Metab. 21, 1291–1298 (2019).

    CAS  Google Scholar 

  111. Lytvyn, Y., Perkins, B. A. & Cherney, D. Z. I. Uric acid as a biomarker and a therapeutic target in diabetes. Can. J. Diabetes 39, 239–246 (2015).

    Google Scholar 

  112. Kirca, M., Oguz, N., Cetin, A., Uzuner, F. & Yesilkaya, A. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ. J. Recept. Signal. Transduct. Res. 12, 107 (2016).

    Google Scholar 

  113. Yu, M. A., Sanchez-Lozada, L. G., Johnson, R. J. & Kang, D. H. Oxidative stress with an activation of the renin-angiotensin system in human vascular endothelial cells as a novel mechanism of uric acid-induced endothelial dysfunction. J. Hypertens. 28, 1234–1242 (2010).

    Google Scholar 

  114. Gersch, C. et al. Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids 27, 967–978 (2008).

    CAS  Google Scholar 

  115. Li, P., Zhang, L., Zhang, M., Zhou, C. & Lin, N. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: a mechanism for uric-acid induced endothelial dysfunction. Int. J. Mol. Med. 37, 989–997 (2016).

    CAS  Google Scholar 

  116. Feig, D. I., Kang, D. H. & Johnson, R. J. Uric acid and cardiovascular risk. N. Engl. J. Med. 359, 1811–1821 (2008).

    CAS  Google Scholar 

  117. Navarro-Gonzalez, J. F., Mora-Fernandez, C.,De Fuentes, M. M. & Garcia-Perez, J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat. Rev. Nephrol. 7, 327–340 (2011).

    CAS  Google Scholar 

  118. Han, J. H. et al. The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE–/– mice fed a Western diet. Diabetologia 60, 364–376 (2017).

    CAS  Google Scholar 

  119. Vallon, V. et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am. J. Physiol. Ren. Physiol. 306, F194–F204 (2013).

    Google Scholar 

  120. Xu, L. et al. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine 20, 137–149 (2017).

    Google Scholar 

  121. Satirapoj, B. Sodium-glucose cotransporter 2 inhibitors with renoprotective effects. Kidney Dis. 3, 24–32 (2017).

    Google Scholar 

  122. Bonnet, F. & Scheen, A. J. Effect of SGLT2 inhibitors on systemic and tissue low-grade inflammation: the potential contribution to diabetes complications and cardiovascular disease. Diabetes Metab. 44, 457–464 (2018).

    CAS  Google Scholar 

  123. Chen, J. et al. Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther. 1, 57–92 (2010).

    CAS  Google Scholar 

  124. Di Franco, A. et al. Sodium-dependent glucose transporters (SGLT) in human ischemic heart: a new potential pharmacological target. Int. J. Cardiol. 243, 86–90 (2017).

    Google Scholar 

  125. Lee, T.-M., Chang, N.-C. & Lin, S.-Z. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free. Radic. Biol. Med. 104, 298–310 (2017).

    CAS  Google Scholar 

  126. Li, C. et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc. Diabetol. 18, 15 (2019).

    Google Scholar 

  127. Lan, N. S. R., Fegan, P. G., Yeap, B. B. & Dwivedi, G. The effects of sodium-glucose cotransporter 2 inhibitors on left ventricular function: current evidence and future directions. ESC Heart Fail. 6, 927–935 (2019).

    Google Scholar 

  128. Verma, S. et al. Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART Cardiolink-6 Randomized Clinical Trial. Circulation 140, 1693–1702 (2019).

    Google Scholar 

  129. Cohen, N. D., Gutman, S. J., Briganti, E. M. & Taylor, A. J. The effects of empagliflozin treatment on cardiac function and structure in patients with type 2 diabetes – a cardiac MRI study. Intern. Med. J. 49, 1006–1010 (2019).

    CAS  Google Scholar 

  130. Clancy, C. E. et al. Deranged sodium to sudden death. J. Physiol. 593, 1331–1345 (2015).

    CAS  Google Scholar 

  131. Baartscheer, A. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 60, 568–573 (2017).

    CAS  Google Scholar 

  132. Uthman, L. et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 61, 722–726 (2018).

    CAS  Google Scholar 

  133. Kolhaas, M. et al. Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121, 1606–1613 (2010).

    Google Scholar 

  134. Vlassara, H. & Bucala, R. Recent progress in advanced glycation and diabetic vascular disease: role of advanced glycation end-product receptors. Diabetes 45, S65–S66 (1996).

    CAS  Google Scholar 

  135. Yan, S. F., Ramasamy, R., Naka, Y. & Schmidt, A. M. Glycation, inflammation and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ. Res. 93, 1159–1169 (2003).

    CAS  Google Scholar 

  136. Yamagishi, S.-I., Nakamura, K., Matsui, T., Noda, Y. & Imaizumi, T. Receptor for advanced glycation end products (RAG): a novel therapeutic target for diabetic vascular complication. Curr. Pharm. Des. 14, 487–495 (2008).

    CAS  Google Scholar 

  137. Goldin, A., Beckman, J. A., Schmidt, A. M. & Creager, M. A. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 114, 597–605 (2006).

    CAS  Google Scholar 

  138. Paradela-Dobarro, B. et al. The different roles for the advanced glycation end-product axis in heart failure and acute coronary syndrome settings. Nutr. Metab. Cardiovasc. Dis. 29, 1050–1060 (2019).

    CAS  Google Scholar 

  139. Ojima, A., Matsui, T., Nishino, Y., Nakamura, N. & Yamagishi, S. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs-receptor axis. Horm. Metab. Res. 47, 686–692 (2015).

    CAS  Google Scholar 

  140. Ishibashi, Y., Matsui, T. & Yamagishi, S. Tofogliflozin, a highly selective inhibitor of SGLT2 blocks proinflammatory and proapoptotic effects of glucose overload on proximal tubular cells partly by suppressing oxidative stress generation. Horm. Metab. Res. 48, 191–195 (2016).

    CAS  Google Scholar 

  141. Yao, D., Wang, S., Wang, M. & Lu, W. Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation products-nuclear factor-κB signaling pathway. Mol. Med. Rep. 18, 3625–3630 (2018).

    CAS  Google Scholar 

  142. Salim, H. et al. Glycemic control with ipragliflozin, a novel selective SGLT2 inhibitor, ameliorated endothelial dysfunction in streptozotocin-induced diabetic mouse. Front. Cardiovasc. Med. 3, 43 (2016).

    Google Scholar 

  143. Habibi, J. et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc. Diabetol. 16, 9 (2017).

    Google Scholar 

  144. Briand, F. et al. Empagliflozin, via switching metabolism towards lipid utilization, moderately increases LDL cholesterol levels through reduced LDL catabolism. Diabetes 65, 2032–2038 (2016).

    CAS  Google Scholar 

  145. Suga, T. et al. SGLT1 in pancreatic α-cells regulates glucagon secretion in mice, possibly explaining the distinct effects of SGLT2 inhibitors on plasma glucagon levels. Mol. Metab. 19, 1–12 (2019).

    CAS  Google Scholar 

  146. Thuesen, L., Christiansen, J. S., Sorensen, K. E., Orskov, H. & Henningsen, P. Low-dose glucagon has no effect on myocardial contractility in normal man. Scand. J. Clin. Lab. Invest. 48, 71–75 (1988).

    CAS  Google Scholar 

  147. Ali, S. et al. Cardiomyocyte glucagon receptor signalling modulates outcome in mice with experimental myocardial infarction. Mol. Metab. 4, 132–143 (2015).

    CAS  Google Scholar 

  148. Tang, H. et al. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials. Diabetologia 59, 2546–2551 (2016).

    CAS  Google Scholar 

  149. Fadini, G. P. et al. Time course and mechanisms of circulating progenitor cell reductions in the natural history of type 2 diabetes. Diabetes Care 33, 1097–1102 (2010).

    Google Scholar 

  150. Fadini, G. P., Rigato, M., Cappellari, R., Bonara, B. M. & Avogaro, A. Long term prediction of cardiovascular outcomes by circulating CD34+ and CD34+CD133+ stem cells in patients with type 2 diabetes. Diabetes Care 40, 125–131 (2017).

    CAS  Google Scholar 

  151. Fadini, G. P., Ciciliot, S. & Albiero, M. Concise review: perspectives and clinical implications of bone marrow and circulating stem cell defects in diabetes. Stem Cell 35, 106–116 (2017).

    Google Scholar 

  152. Bonora, B. M., Cappellari, R., Albiero, M., Avogaro, A. & Fadini, G. P. Effects of SGLT2 inhibitors on circulating stem and progenitor cells in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 103, 3773–3782 (2018).

    Google Scholar 

  153. Fadini, G. P. et al. Optimized glycaemic control achieved with add-on basal insulin therapy improves indexes of endothelial damage and regeneration in type 2 diabetic patients with macroangiopathy: a randomized crossover trial comparing detemir versus glargine. Diabetes Obes. Metab. 13, 718–725 (2011).

    CAS  Google Scholar 

  154. Cosentino, F. et al. 2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J. 41, 255–323 (2020).

    Google Scholar 

  155. Das, S. R. et al. 2018 ACC expert consensus decision pathway on novel therapies for cardiovascular risk reduction in patients with type 2 diabetes and atherosclerotic cardiovascular disease. J. Am. Coll. Cardiol. 72, 3200–3223 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.R.C. researched data for the article and both authors discussed its content. M.R.C. wrote the manuscript and both authors reviewed and edited it before submission.

Corresponding author

Correspondence to Martin R. Cowie.

Ethics declarations

Competing interests

M.R.C. is a non-executive director of the National Institute for Health and Care (NICE) but this Review should not be taken as an official position of that organization on the role of SGLT2 inhibitors. M.R.C. has provided consultancy advice and received honoraria for lecturing at educational events from AstraZeneca, Boehringer Ingelheim, Eli Lilly and NovoNordisk. M.F. has provided consultancy advice and received honoraria for lecturing at educational events from AstraZeneca, Boehringer Ingelheim, Eli Lilly, Janssen, NAPP, NovoNordisk and Sanofi. M.F. is on the data and safety monitoring board for the phase III development programme for sotagliflozin.

Additional information

Peer review information

Nature Reviews Cardiology thanks A. Scheen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cowie, M.R., Fisher, M. SGLT2 inhibitors: mechanisms of cardiovascular benefit beyond glycaemic control. Nat Rev Cardiol 17, 761–772 (2020). https://doi.org/10.1038/s41569-020-0406-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-0406-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing