Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Pumping between phases with a pulsed-fuel molecular ratchet

Abstract

The sorption of species from a solution into and onto solids underpins the sequestering of waste and pollutants, precious metal recovery, heterogeneous catalysis, analysis and separation science, and other technologies1,2. The transfer between phases tends to proceed spontaneously in the direction of equilibrium. For example, alkyl ammonium groups mounted on silica nanoparticles are used to chemisorb cucurbituril macrocycles from solution through host–guest binding3,4. Molecular ratchet mechanisms5,6,7, in which kinetic gating8,9,10,11,12 inhibits or accelerates particular steps, makes it possible to progressively drive dynamic systems13,14,15,16 away from equilibrium17,18,19,20,21. Here we report on molecular pumps22 immobilized on polymer beads23,24,25 that use an energy ratchet mechanism5,9,19,20,21,26,27,28,29,30 to directionally transport substrates from solution onto the beads. On the addition of trichloroacetic acid (CCl3CO2H)19,31,32,33 fuel19,34,35,36,37, micrometre-diameter polystyrene beads functionalized38 with solvent-accessible molecular pumps sequester from the solution crown ethers appended with fluorescent tags. After fuel consumption, the rings are mechanically trapped in a higher-energy, out-of-equilibrium state on the beads and cannot be removed by dilution or exhaustive washing. This differs from dissipative assembled materials11,13,14,15,16, which require a continuous supply of energy to persist, and from conventional host–guest complexes. The addition of a second fuel pulse causes the uptake of more macrocycles, which drives the system further away from equilibrium. The second macrocycle can be labelled with a different fluorescent tag, which confers sequence information39 on the absorbed structure. The polymer-bound substrates can be released back to the bulk either one compartment at a time or all at once. Non-equilibrium40 sorption by immobilized artificial molecular machines41,42,43,44,45 enables the transduction of energy from chemical fuels for the use, storage and release of energy and information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pumping from solution to the solvent-accessible sites of polymer beads with a pulsed chemical fuel.
Fig. 2: Stepwise operation of molecular pump 1 in solution.
Fig. 3: Partial 1H NMR (600 MHz, CD3CN, 298 K) spectra for the operation of molecular ratchet 1 in solution.
Fig. 4: Sequential pumping from solution onto polymer beads with a pulsed chemical fuel.
Fig. 5: Reading sequence information stored in ratcheted rotaxane polymer beads.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information.

References

  1. Yang, Y.-W., Sun, Y.-L. & Song, N. Switchable host–guest systems on surfaces. Acc. Chem. Res. 47, 1950–1960 (2014).

    Article  CAS  Google Scholar 

  2. Kolesnichenko, I. V. & Anslyn, E. V. Practical applications of supramolecular chemistry. Chem. Soc. Rev. 46, 2385–2390 (2017).

    Article  CAS  Google Scholar 

  3. Nguyen, T. D. et al. A reversible molecular valve. Proc. Natl Acad. Sci. USA 102, 10029–10034 (2005).

    Article  CAS  Google Scholar 

  4. Yang, Y.-W. Towards biocompatible nanovalves based on mesoporous silica nanoparticles. Med. Chem. Commun. 2, 1033–1049 (2011).

    Article  CAS  Google Scholar 

  5. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  6. Zhang, L., Marcos, V. & Leigh, D. A. Molecular machines with bio-inspired mechanisms. Proc. Natl Acad. Sci. USA 115, 9397–9404 (2018).

    Article  CAS  Google Scholar 

  7. Astumian, R. D. et al. Non-equilibrium kinetics and trajectory thermodynamics of synthetic molecular pumps. Mater. Chem. Front. 4, 1304–1314 (2020).

    Article  CAS  Google Scholar 

  8. Astumian, R. D. Irrelevance of the power stroke for the directionality, stopping force, and optimal efficiency of chemically driven molecular machines. Biophys. J. 108, 291–303 (2015).

    Article  CAS  Google Scholar 

  9. Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    Article  CAS  Google Scholar 

  10. Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    Article  CAS  Google Scholar 

  11. Amano, S., Fielden, S. D. P. & Leigh, D. A. A catalysis-driven artificial molecular pump. Nature 594, 529–534 (2021).

    Article  CAS  Google Scholar 

  12. Borsley, S., Leigh, D. A. & Roberts, B. M. W. A doubly kinetically-gated information ratchet autonomously driven by carbodiimide hydration. J. Am. Chem. Soc. 143, 4414–4420 (2021).

    Article  CAS  Google Scholar 

  13. Boekhoven, J., Hendriksen, W. E., Koper, G. J. M., Eelkema, R. & van Esch, J. H. Transient assembly of active materials fueled by a chemical reaction. Science 349, 1075–1079 (2015).

    Article  CAS  Google Scholar 

  14. De, S. & Klajn, R. Dissipative self-assembly driven by the consumption of chemical fuels. Adv. Mater. 30, 1706750 (2018).

    Article  CAS  Google Scholar 

  15. van Rossum, S. A. P., Tena-Solsona, M., van Esch, J. H., Eelkema, R. & Boekhoven, J. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. Chem. Soc. Rev. 46, 5519–5535 (2017).

    Article  Google Scholar 

  16. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    Article  CAS  Google Scholar 

  17. Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article  CAS  Google Scholar 

  18. Cheng, C. et al. An artificial molecular pump. Nat. Nanotechnol. 10, 547–553 (2015).

    Article  CAS  Google Scholar 

  19. Erbas-Cakmak, S. et al. Rotary and linear molecular motors driven by pulses of a chemical fuel. Science 358, 340–343 (2017).

    Article  CAS  Google Scholar 

  20. Pezzato, C. et al. Controlling dual molecular pumps electrochemically. Angew. Chem. Int. Ed. 57, 9325–9329 (2018).

    Article  CAS  Google Scholar 

  21. Qiu, Y. et al. A precise polyrotaxane synthesizer. Science 368, 1247–1253 (2020).

    Article  CAS  Google Scholar 

  22. Qiu, Y., Feng, Y., Guo, Q.-H., Astumian, R. D. & Stoddart, J. F. Pumps through the ages. Chem 6, 1952–1977 (2020).

    Article  CAS  Google Scholar 

  23. Balzani, V., Credi, A. & Venturi, M. Molecular machines working on surfaces and at interfaces. ChemPhysChem 9, 202–220 (2008).

    Article  CAS  Google Scholar 

  24. Davis, J. J., Orlowski, G. A., Rahman, H. & Beer, P. D. Mechanically interlocked and switchable molecules at surfaces. Chem. Commun. 46, 54–63 (2010).

    Article  CAS  Google Scholar 

  25. Zhang, Q. & Qu, D.-H. Artificial molecular machine immobilized surfaces: a new platform to construct functional materials. ChemPhysChem 17, 1759–1768 (2016).

    Article  CAS  Google Scholar 

  26. Astumian, R. D. & Derényi, I. Fluctuation driven transport and models of molecular motors and pumps. Eur. Biophys. J. 27, 474–489 (1998).

    Article  CAS  Google Scholar 

  27. Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  Google Scholar 

  28. Chatterjee, M. N., Kay, E. R. & Leigh, D. A. Beyond switches: ratcheting a particle energetically uphill with a compartmentalized molecular machine. J. Am. Chem. Soc. 128, 4058–4073 (2006).

    Article  CAS  Google Scholar 

  29. Barrell, M. J., Campaña, A. G., von Delius, M., Geertsema, E. M. & Leigh, D. A. Light-driven transport of a molecular walker in either direction along a molecular track. Angew. Chem. Int. Ed. 50, 285–290 (2011).

    Article  CAS  Google Scholar 

  30. Kassem, S., Lee, A. T. L., Leigh, D. A., Markevicius, A. & Solà, J. Pick-up, transport and release of a molecular cargo using a small-molecule robotic arm. Nat. Chem. 8, 138–143 (2016).

    Article  CAS  Google Scholar 

  31. Biagini, C. et al. Dissipative catalysis with a molecular machine. Angew. Chem. Int. Ed. 58, 9876–9880 (2019).

    Article  CAS  Google Scholar 

  32. Olivieri, E., Quintard, G., Naubron, J.-V. & Quintard, A. Chemically fueled three-state chiroptical switching supramolecular gel with temporal control. J. Am. Chem. Soc. 143, 12650–12657 (2021).

    Article  CAS  Google Scholar 

  33. Abe, Y. et al. Thermoresponsive shuttling of rotaxane containing trichloroacetate ion. Org. Lett. 14, 4122–4125 (2012).

    Article  CAS  Google Scholar 

  34. Berrocal, J. A., Biagini, C., Mandolini, L. & Di Stefano, S. Coupling of the decarboxylation of 2-cyano-2-phenylpropanoic acid to large-amplitude motions: a convenient fuel for an acid-base-operated molecular switch. Angew. Chem. Int. Ed. 55, 6997–7001 (2016).

    Article  CAS  Google Scholar 

  35. Ghosh, A., Paul, I., Adlung, M., Wickleder, C. & Schmittel, M. Oscillating emission of [2]rotaxane driven by chemical fuel. Org. Lett. 20, 1046–1049 (2018).

    Article  CAS  Google Scholar 

  36. Shiab, Q. & Chen, C.-F. Step-by-step reaction-powered mechanical motion triggered by a chemical fuel pulse. Chem. Sci. 10, 2529–2533 (2019).

    Article  Google Scholar 

  37. Biagini, C. & Di Stefano, S. Abiotic chemical fuels for the operation of molecular machines. Angew. Chem. Int. Ed. 59, 8344–8354 (2020).

    Article  CAS  Google Scholar 

  38. Asthana, D. et al. Decorating beads with paramagnetic rings: synthesis of inorganic-organic [1014]rotaxanes as shown by spin counting. Preprint at https://chemrxiv.org/engage/chemrxiv/article-details/62019a0ba6fb4d98af4e3aea (2022).

  39. Fuller, A.-M. L., Leigh, D. A. & Lusby, P. J. Sequence isomerism in [3]rotaxanes. J. Am. Chem. Soc. 132, 4954–4959 (2010).

    Article  CAS  Google Scholar 

  40. van Esch, J. H., Klajn, R. & Otto, S. Chemical systems out of equilibrium. Chem. Soc. Rev. 46, 5474–5475 (2017).

    Article  Google Scholar 

  41. Berná, J. et al. Macroscopic transport by synthetic molecular machines. Nat. Mater. 4, 704–710 (2005).

    Article  CAS  Google Scholar 

  42. Zhu, K. L., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem. 7, 514–519 (2015).

    Article  CAS  Google Scholar 

  43. Martinez-Bulit, P., Stirk, A. J. & Loeb, S. J. Rotors, motors, and machines inside metal–organic frameworks. Trends Chem. 1, 588–600 (2019).

    Article  CAS  Google Scholar 

  44. Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

    Article  CAS  Google Scholar 

  45. Krause, S. & Feringa, B. L. Towards artificial molecular factories from framework-embedded molecular machines. Nat. Rev. Chem. 4, 550–562 (2020).

    Article  CAS  Google Scholar 

  46. Wilson, M. R. et al. An autonomous chemically fuelled small-molecule motor. Nature 534, 235–240 (2016).

    Article  CAS  Google Scholar 

  47. Coutrot, F. A focus on triazolium as a multipurpose molecular station for pH-sensitive interlocked crown-ether-based molecular machines. ChemistryOpen 4, 556–576 (2015).

    Article  CAS  Google Scholar 

  48. Liang, L. & Astruc, D. The copper(I)-catalyzed alkyne–azide cycloaddition (CuAAC) ‘click’ reaction and its applications. An overview. Coord. Chem. Rev. 255, 2933–2945 (2011).

    Article  CAS  Google Scholar 

  49. Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

    Article  CAS  Google Scholar 

  50. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    Article  CAS  Google Scholar 

  51. Ardagh, M. A., Birol, T., Zhang, Q., Abdelrahman, O. A. & Dauenhauer, P. J. Catalytic resonance theory: superVolcanoes, catalytic molecular pumps, and oscillatory steady state. Catal. Sci. Technol. 9, 5058–5076 (2019).

    Article  CAS  Google Scholar 

  52. Feng, L. et al. Active mechanisorption driven by pumping cassettes. Science 374, 1215–1221 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Webb and D. Heyes for assistance with the fluorescence microscopy and spectroscopy, S. D. P. Fielden for useful discussions, the University of Manchester Mass Spectrometry Service Centre for high-resolution mass spectrometry, the Engineering and Physical Sciences Research Council (EPSRC; EP/P027067/1) and the EU (European Research Council (ERC); Advanced grant number 786630) for funding, the University of Manchester for a President’s Scholarship (to D.T.), Marie Skłodowska-Curie Actions of the European Union (individual postdoctoral fellowship 892035 to Y.R.) and J. F. Stoddart for the advanced disclosure of Feng et al.52. D.A.L. is a Royal Society Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

D.T., D.J.T., Y.R., S.K. and U.K. planned and carried out the experimental work and characterization studies. D.A.L. directed the research. All authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to David A. Leigh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Ying-Wei Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Schemes 1–10 and Spectra 1–75.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D., Tetlow, D.J., Ren, Y. et al. Pumping between phases with a pulsed-fuel molecular ratchet. Nat. Nanotechnol. 17, 701–707 (2022). https://doi.org/10.1038/s41565-022-01097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01097-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing