Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantum engineering of transistors based on 2D materials heterostructures

A Publisher Correction to this article was published on 22 May 2018

This article has been updated

Abstract

Quantum engineering entails atom-by-atom design and fabrication of electronic devices. This innovative technology that unifies materials science and device engineering has been fostered by the recent progress in the fabrication of vertical and lateral heterostructures of two-dimensional materials and by the assessment of the technology potential via computational nanotechnology. But how close are we to the possibility of the practical realization of next-generation atomically thin transistors? In this Perspective, we analyse the outlook and the challenges of quantum-engineered transistors using heterostructures of two-dimensional materials against the benchmark of silicon technology and its foreseeable evolution in terms of potential performance and manufacturability. Transistors based on lateral heterostructures emerge as the most promising option from a performance point of view, even if heterostructure formation and control are in the initial technology development stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Seven proposed transistor structures based on 2D heterostructures.
Fig. 3: Consensus on the transistor device structure to be used in CMOS chips versus year of first shipment.
Fig. 4

Similar content being viewed by others

Change history

  • 22 May 2018

    In the version of this Perspective originally published, in the email address for the author Giuseppe Iannaccone, the surname was incorrectly given as “innaconne”; this has now been corrected in all versions of the Perspective. Also, an error in the production process led to Figs. 1, 2 and 3 being of low resolution; these have now been replaced with higher-quality versions.

References

  1. Novoselov, K. S. & Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Phys. Scr. T146, 014006 (2012).

    Article  Google Scholar 

  2. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  Google Scholar 

  3. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  4. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotech. 9, 768–779 (2014).

    Article  Google Scholar 

  5. Capasso, F. Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987).

    Article  Google Scholar 

  6. Yablonovitch, E. & Kane, E. O. Band structure engineering of semiconductor lasers for optical communications. J. Light. Technol. 6, 1292–1299 (1987).

    Article  Google Scholar 

  7. Harame, D. L. et al. Si/SiGe Epitaxial-base transistors. 1. Materials and Circuits. IEEE Trans. Electron Devices 42, 455–468 (1995).

    Article  Google Scholar 

  8. Heiblum, M., Nathan, M. I., Thomas, D. C. & Knoedler, C. M. Direct observation of ballistic transport in GaAs. Phys. Rev. Lett. 55, 2200–2203 (1985).

    Article  Google Scholar 

  9. Capasso, F., Sen, S., Gossard, A. C., Hutchinson, A. L. & English, J. H. Quantum well resonant tunneling bipolar transistor operating at room temperature. IEEE Electron Device Lett. 7, 573–575 (1986).

    Article  Google Scholar 

  10. Yokoyama, N. et al. A new functional, resonant-tunneling hot-electron transistor (RHET). Jap. J. Appl. Phys. 24, L853–L854 (1985).

    Article  Google Scholar 

  11. Capasso, F., Tsang, W. T., Bethea, C. G., Hutchinson, A. L. & Levine, B. F. New graded band‐gap picosecond phototransistor. Appl. Phys. Lett. 42, 93–95 (1983).

    Article  Google Scholar 

  12. Kuhn, K. J. et al. The ultimate CMOS device and beyond. In IEDM Tech. Dig. 8.1.1–8.1.4. (IEEE, 2012).

  13. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010).

    Article  Google Scholar 

  14. Levendorf, M. P. et al. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488, 627–632 (2012).

    Article  Google Scholar 

  15. Liu, Z. et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotech. 8, 119–124 (2013).

    Article  Google Scholar 

  16. Han, G. H. et al. Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition. ACS Nano 7, 10129–10138 (2013).

    Article  Google Scholar 

  17. Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012).

    Article  Google Scholar 

  18. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotech. 9, 391–396 (2014).

    Article  Google Scholar 

  19. Fang, S. & Kaxiras, E. Electronic structure theory of weakly interacting bilayers. Phys. Rev. B 93, 235153 (2016).

    Article  Google Scholar 

  20. Carr, S. et al. Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

    Article  Google Scholar 

  21. Burg, G. et al. Coherent Interlayer Tunneling and Negative Differential Resistance with High Current Density in Double Bilayer Graphene–WSe2 Heterostructures. Nano Lett. 17, 3919–3925 (2017).

    Article  Google Scholar 

  22. Britnell, L. et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 335, 947–950 (2012).

    Article  Google Scholar 

  23. Yang, H. et al. Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science 336, 1140–1143 (2012).

    Article  Google Scholar 

  24. Fiori, G., Bruzzone, S. & Iannaccone, G. Very Large Current Modulation in Vertical Heterostructure Graphene / h-BN Transistors. IEEE Trans. Electron Devices 60, 268–273 (2013).

    Article  Google Scholar 

  25. Mehr, W. et al. Vertical graphene base transistor. IEEE Electron Device Lett. 33, 691–693 (2012).

    Article  Google Scholar 

  26. Vaziri, S. et al. A graphene-based hot electron transistor. Nano Lett. 13, 1435–1439 (2013).

    Article  Google Scholar 

  27. Georgiou, T. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotech. 8, 100–103 (2013).

    Article  Google Scholar 

  28. Deng, Y. et al. Black Phosphorus–Monolayer MoS2 van der Waals Heterojunction p–n Diode. ACS Nano 8, 8292–8299 (2014).

    Article  Google Scholar 

  29. Fiori, G., Betti, A., Bruzzone, S., D’Amico, P. & Iannaccone, G. Nanodevices in Flatland: Two-dimensional graphene-based transistors with high Ion/Ioff ratio. In IEDM Tech. Dig. 11.4.1–11.4.4 (IEEE, 2011).

  30. Iannaccone, G. & Fiori, G. Field-effect transistor with two-dimensional channel realized with lateral heterostructures based on hybridized graphene. US patent 9,620,634 (2017).

  31. Fiori, G., Betti, A., Bruzzone, S. & Iannaccone, G. Lateral Graphene-hBCN Heterostructures as a Platform for Fully Two-Dimensional Transistors. ACS Nano 6, 2642–2648 (2012).

    Article  Google Scholar 

  32. Moon, J. S. et al. Lateral graphene heterostructure field-effect transistor. IEEE Electron Device Lett. 34, 1190–1192 (2013).

    Article  Google Scholar 

  33. Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7, 3246–3252 (2013).

    Article  Google Scholar 

  34. Choi, M. S. et al. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 4, 1624 (2013).

    Article  Google Scholar 

  35. Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, Y. Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  Google Scholar 

  36. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotech. 9, 676–681 (2014).

    Article  Google Scholar 

  37. Britnell, L. et al. Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. Science 340, 1311–1314 (2014).

    Article  Google Scholar 

  38. Nikonov, D. E. & Young, I. A. Overview of Beyond-CMOS Devices and a Uniform Methodology for Their Benchmarking. Proc. IEEE 101, 2498–2533 (2013).

    Article  Google Scholar 

  39. Nikonov, D. E. & Young, I. A. Benchmarking of Beyond-CMOS Exploratory Devices for Logic Integrated Circuits. IEEE J. Explor. Solid-State Computat. Devices Circuits 1, 3–11 (2015).

    Article  Google Scholar 

  40. International Technology Roadmap for Semiconductors 2.0–2015 Edition (ITRS, accessed 14 February 2018); http://www.itrs2.net.

  41. International Roadmap for Devices and Systems 2016 Edition (IEEE, accessed 14 February 2018); https://irds.ieee.org/images/files/pdf/2016_MM.pdf

  42. Hisamoto, D. et al. A folded‐channel MOSFET for deep‐sub‐tenth micron era. In IEDM Tech. Dig. 1032–1034 (IEEE, 1998)..

  43. Narasimha, S. et al. A 7nm CMOS Technology Platform for Mobile and High Performance Compute Applications. In IEDM Tech. Dig. 689–692 (IEEE, 2017).

  44. Moroz, V., Huang, J. & Choi, M. FinFET/nanowire design for 5nm/3nm technology nodes: Channel cladding and introducing a “bottleneck” shape to remove performance bottleneck. In EDTM 67–69 (IEEE, 2017).

  45. Li, E. H. & Weiss, B. L. Bandgap engineering and quantum wells in optoelectronic devices. Electronics and Communication Eng. J. 3, 63–79 (1991).

    Article  Google Scholar 

  46. Harbison, J. P. et al. MBE growth of AlGaAs/NiAl/AlGaAs heterostructures – a novel epitaxial III-V semiconductor metal system. J. Crystal Growth 95, 425–426 (1989).

    Article  Google Scholar 

  47. Bonaccorso, F. et al. Production and processing of graphene and 2D crystals. Materials Today 15, 564–589 (2012).

    Article  Google Scholar 

  48. Ismach, A. et al. Carbon-assisted chemical vapor deposition of hexagonal boron nitride. 2D Materials 4, 025117 (2017).

    Article  Google Scholar 

  49. Sonde, S. et al. Ultrathin, wafer-scale hexagonal boron nitride on dielectric surfaces by diffusion and segregation mechanism. 2D Materials 4, 025052 (2017).

    Article  Google Scholar 

  50. Lv, R. et al. Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and Applications of Single- and Few-Layer Nanosheets. Acc. Chem. Res. 48, 56–64 (2015).

    Article  Google Scholar 

  51. Nie, Y. F. et al. First principles kinetic Monte Carlo study on the growth patterns of WSe2 monolayer. 2D Materials 3, 025029 (2016).

    Article  Google Scholar 

  52. Yue, R. et al. Nucleation and growth of WSe2: enabling large grain transition metal dichalcogenides. 2D Materials 4, 045019 (2017).

    Article  Google Scholar 

  53. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  Google Scholar 

  54. Li, X., Cai, W., Colombo, L. & Ruoff, R. S. Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Lett. 9, 4268–4272 (2009).

    Article  Google Scholar 

  55. Yu, Q. K. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011).

    Article  Google Scholar 

  56. Hao, Y. F. et al. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science 342, 720–723 (2013).

    Article  Google Scholar 

  57. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  Google Scholar 

  58. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    Article  Google Scholar 

  59. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  Google Scholar 

  60. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010).

    Article  Google Scholar 

  61. Banszerus, L. et al. Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Sci. Adv. 1, 1500222 (2015).

    Article  Google Scholar 

  62. Banszerus, L. et al. Ballistic Transport Exceeding 28 mu m in CVD Grown Graphene. Nano Lett. 16, 1387–1391 (2016).

    Article  Google Scholar 

  63. Nie, Y. et al. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides. Sci. Rep. 7, 2977 (2017).

    Article  Google Scholar 

  64. Yu, Q. K. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 10, 443–449 (2011).

    Article  Google Scholar 

  65. Miseikis, V. et al. Deterministic patterned growth of high-mobility large-crystal graphene: a path towards wafer scale integration. 2D Materials 4, 021004 (2017).

    Article  Google Scholar 

  66. Mcmanus, D. et al. Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nat. Nanotech. 12, 343–350 (2017).

    Article  Google Scholar 

  67. Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017).

    Article  Google Scholar 

  68. Torrisi, F. et al. Inkjet-Printed Graphene Electronics. ACS Nano 6, 2992–3006 (2012).

    Article  Google Scholar 

  69. Bonaccorso, F., Bartolotta, A., Coleman, J. N. & Backes, C. Adv. Mater. 28, 6136–6166 (2016).

    Article  Google Scholar 

  70. Marian, D. et al. Transistor Concepts Based on Lateral Heterostructures of Metallic and Semiconducting Phases of MoS2. Phys. Rev. Appl. 8, 054047 (2017).

    Article  Google Scholar 

  71. Roy, T. et al. Dual-Gated MoS2/WSe2 van der Waals Tunnel Diodes and Transistors. ACS Nano 9, 2071–2079 (2015).

    Article  Google Scholar 

  72. Lu, S.-C., Mohamed, M. & Zhu, W. Novel vertical hetero- and homo-junction tunnel field-effect transistors based on multi-layer 2D crystals. 2D Materials 3, 011010 (2016).

    Article  Google Scholar 

  73. Irisawa, T., Numata, T., Tezuka, T., Sugiyama, N. & Takagi, S.-I. Electron Transport Properties of Ultrathin-body and Tri-gate SOI nMOSFETs with Biaxial and Uniaxial Strain. In IEDM Tech. Dig. 457–460 (IEEE, 2006)..

  74. Uchida, K., Watanabe, H., Koga, J., Kinoshita, A. & Takagi, S. Experimental Study on Carrier Transport Mechanism in Ultrathin-body SOI MOSFETs. In IEDM Tech. Dig. 47–50 (IEEE, 2002).

  75. Xiao, Y., Kang, J., Takenaka, M. & Takagi, S. Experimental Study on Carrier Transport Properties in Extremely-Thin Body Ge-on-Insulator (GOI) p-MOSFETs with GOI Thickness down to 2 nm. In IEDM Tech. Dig. 2.2.1–2.2.4 (IEEE, 2015).

  76. Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).

    Article  Google Scholar 

  77. Kim, S. et al. Experimental study on electron mobility in InxGa1−xAs-on-insulator metal–oxide–semiconductor field-effect transistors with In content modulation and MOS interface buffer engineering. IEEE Trans. Nanotech. 12, 621–628 (2013).

    Article  Google Scholar 

  78. Kim, D. et al. The enhanced low resistance contacts and boosted mobility in two-dimensional p-type WSe2 transistors through Ar+ ion-beam generated surface defects. AIP Advances 6, 105307 (2016).

    Article  Google Scholar 

  79. Fang, H. et al. High-Performance Single Layered WSe2 p-FETs with Chemically Doped Contacts. Nano Lett. 12, 3788–3792 (2016).

    Article  Google Scholar 

  80. Liu, B. et al. High-Performance WSe2 Field-Effect Transistors via Controlled Formation of In-GaAs Plane Heterojunctions. ACS Nano 10, 5153–5160 (2016).

    Article  Google Scholar 

  81. Cui, Y. et al. High-Performance Monolayer WS2 Field-Effect Transistors on High-κDielectrics. Adv. Mat. 27, 5230–5234 (2015).

    Article  Google Scholar 

  82. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotech. 9, 372–377 (2014).

    Article  Google Scholar 

  83. Engel, M., Farmer, D. B., Han, S. & Wong, H. S. P. High-Performance p Type Black Phosphorus Transistor with Scandium Contact. ACS Nano 10, 4672–4677 (2016).

    Article  Google Scholar 

  84. Lembke, D., Allain, A. & Kis, A. Thickness-dependent mobility in two-dimensional MoS2 transistors. Nanoscale 7, 6255–6260 (2015).

    Article  Google Scholar 

  85. Yu, Z. et al. Realization of Room-Temperature Phonon-Limited Carrier Transport in Monolayer MoS2 by Dielectric and Carrier Screening. Adv. Mater. 28, 547–552 (2016).

    Article  Google Scholar 

  86. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  Google Scholar 

  87. English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved Contacts to MoS2 Transistors by Ultra-High Vacuum Metal Deposition. Nano Lett. 16, 3824–3830 (2016).

    Article  Google Scholar 

  88. English, C. D., Smithe, K. K. H., Xu, R. L. & Pop, E. Approaching Ballistic Transport in Monolayer MoS2 Transistors with Self-Aligned 10 nm Top Gates. In IEDM Tech. Dig. 5.6.1–5.6.4 (IEEE, 2016).

  89. Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    Article  Google Scholar 

  90. Xia, F., Perebeinos, V., Lin, Y., Wu, Y. & Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotech. 6, 179–184 (2011).

    Article  Google Scholar 

  91. Logoteta, D., Fiori, G. & Iannaccone, G. Graphene-based lateral heterostructure transistors exhibit better intrinsic performance than graphene-based vertical transistors as post-CMOS devices. Sci. Rep. 4, 6607 (2014).

    Article  Google Scholar 

  92. Mostofi, A. A. et al. Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).

    Article  Google Scholar 

  93. Bruzzone, S., Iannaccone, G., Marzari, N. & Fiori, G. An Open-Source Multiscale Framework for the Simulation of Nanoscale Devices. IEEE Trans. Electron Devices 61, 48–53 (2014).

    Article  Google Scholar 

  94. Fiori, G. & Iannaccone, G. Multiscale Modeling for Graphene-Based Nanoscale Transistors. Proc. IEEE 101, 1653–1669 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 696656—GrapheneCore1, and a Newton International Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Giuseppe Iannaccone or Francesco Bonaccorso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iannaccone, G., Bonaccorso, F., Colombo, L. et al. Quantum engineering of transistors based on 2D materials heterostructures. Nature Nanotech 13, 183–191 (2018). https://doi.org/10.1038/s41565-018-0082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-018-0082-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing