Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aqueous microdroplets promote C–C bond formation and sequences in the reverse tricarboxylic acid cycle

Abstract

The reverse tricarboxylic acid cycle (rTCA) is a central anabolic network that uses carbon dioxide (CO2) and may have provided complex carbon substrates for life before the advent of RNA or enzymes. However, non-enzymatic promotion of the rTCA cycle, in particular carbon fixation, remains challenging, even with primordial metal catalysis. Here, we report that the fixation of CO2 by reductive carboxylation of succinate and α-ketoglutarate was achieved in aqueous microdroplets under ambient conditions without the use of catalysts. Under identical conditions, the aqueous microdroplets also facilitated the sequences in the rTCA cycle, including reduction, hydration, dehydration and retro-aldol cleavage and linked with the glyoxylate cycle. These reactions of the rTCA cycle were compatible with the aqueous microdroplets, as demonstrated with two-reaction and four-reaction sequences. A higher selectivity giving higher product yields was also observed. Our results suggest that the microdroplets provide an energetically favourable microenvironment and facilitate a non-enzymatic version of the rTCA cycle in prebiotic carbon anabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hypothetical rTCA cycle pathway consisting of the AcCoA pathway and the rTCA cycle.
Fig. 2: Reductive carboxylation of α-ketoglutarate to isocitrate and citrate in aqueous microdroplets.
Fig. 3: Reductive carboxylation of succinate (0.1 mM) to α-ketoglutarate in microdroplets.
Fig. 4: Characterization of the reductive carboxylations of succinate and α-ketoglutarate.
Fig. 5: Reductive mechanism for carboxylation of succinate and α-ketoglutarate.

Similar content being viewed by others

Data availability

All the results supporting the findings are in Supplementary Information. Source data are provided with this paper.

References

  1. Muchowska, K. B., Varma, S. J. & Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 120, 7708–7744 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Berg, I. A. et al. Autotrophic carbon fixation in Archaea. Nat. Rev. Microbiol. 8, 447–460 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Preiner, M. et al. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 4, 534–542 (2020).

    Article  PubMed  Google Scholar 

  4. Ianeselli, A. et al. Water cycles in a Hadean CO2 atmosphere drive the evolution of long DNA. Nat. Phys. 18, 579–585 (2022).

    Article  CAS  Google Scholar 

  5. Hudson, R. et al. CO2 reduction driven by a pH gradient. Proc. Natl Acad. Sci. USA 117, 22873–22879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Kitadai, N. et al. Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Sci. Adv. 5, eaav7848 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Novikov, Y. & Copley, S. D. Reactivity landscape of pyruvate under simulated hydrothermal vent conditions. Proc. Natl Acad. Sci. USA 110, 13283–13288 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. B 362, 1887–1925 (2007).

  11. Wachtershauser, G. Before enzymes and templaters—theory of surface metabolism. Microbiol. Rev. 52, 452–484 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Varma, S. J., Muchowska, K. B., Chatelain, P. & Moran, J. Native iron reduces CO2 to intermediates and end-products of the acetyl-CoA pathway. Nat. Ecol. Evol. 2, 1019–1024 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cody, G. D. et al. Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289, 1337–1339 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Keller, M. A., Kampjut, D., Harrison, S. A. & Ralser, M. Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nat. Ecol. Evol. 1, 0083 (2017).

  15. Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl Acad. Sci. USA 101, 13168–13173 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Evans, M. C., Buchanan, B. B. & Arnon, D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl Acad. Sci. USA 55, 928–934 (1966).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Srinivasan, V. & Morowitz, H. J. Analysis of the intermediary metabolism of a reductive chemoautotroph. Biol. Bull. 217, 222–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Morowitz, H. J., Kostelnik, J. D., Yang, J. & Cody, G. D. The origin of intermediary metabolism. Proc. Natl Acad. Sci. USA 97, 7704–7708 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wachtershauser, G. Evolution of the 1st metabolic cycles. Proc. Natl Acad. Sci. USA 87, 200–204 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carbonell, P., Lecointre, G. & Faulon, J. L. Origins of specificity and promiscuity in metabolic networks. J. Biol. Chem. 286, 43994–44004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kitadai, N., Kameya, M. & Fujishima, K. Origin of the reductive tricarboxylic acid (rTCA) cycle-type CO2 fixation: a perspective. Life 7, 39–44 (2017).

    Article  PubMed Central  Google Scholar 

  22. Codya, G. D. et al. Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H2O-(±FeS)-(±NiS). Geochim. Cosmochim. Acta 65, 3557–3576 (2001).

    Article  Google Scholar 

  23. Muchowska, K. B. et al. Metals promote sequences of the reverse Krebs cycle. Nat. Ecol. Evol. 1, 1716–1721 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang, X. V. & Martin, S. T. Driving parts of Krebs cycle in reverse through mineral photochemistry. J. Am. Chem. Soc. 128, 16032–16033 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Muchowska, K. B., Varma, S. J. & Moran, J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569, 104–107 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rauscher, S. A. & Moran, J. Hydrogen drives part of the reverse Krebs cycle under metal or meteorite catalysis. Angew. Chem. Int. Ed. Engl. 61, e202212932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Springsteen, G., Yerabolu, J. R., Nelson, J., Rhea, C. J. & Krishnamurthy, R. Linked cycles of oxidative decarboxylation of glyoxylate as protometabolic analogs of the citric acid cycle. Nat. Commun. 9, 91–99 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ju, Y. et al. Aqueous-microdroplet-driven abiotic synthesis of ribonucleotides. J. Phys. Chem. Lett. 13, 567–573 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Nam, I., Lee, J. K., Nam, H. G. & Zare, R. N. Abiotic production of sugar phosphates and uridine ribonucleoside in aqueous microdroplets. Proc. Natl Acad. Sci. USA 114, 12396–12400 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, J. K., Samanta, D., Nam, H. G. & Zare, R. N. Micrometer-sized water droplets induce spontaneous reduction. J. Am. Chem. Soc. 141, 10585–10589 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Wei, Z., Li, Y., Cooks, R. G. & Yan, X. Accelerated reaction kinetics in microdroplets: overview and recent developments. Annu. Rev. Phys. Chem. 71, 31–51 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, L. et al. Sprayed water microdroplets containing dissolved pyridine spontaneously generate pyridyl anions. Proc. Natl Acad. Sci. USA 119, e2200991119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ju, Y. et al. Abiotic synthesis with plausible emergence for primitive phospholipid in aqueous microdroplets. J. Colloid Interface Sci. 634, 535–542 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, W. et al. Water microdroplets allow spontaneously abiotic production of peptides. J. Phys. Chem. Lett. 12, 5774–5780 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Teunissen, S. F., Fernandes, A. M. A. P., Eberlin, M. N. & Alberici, R. M. Celebrating 10 years of easy ambient sonic-spray ionization. TrAC-Trend Anal. Chem. 90, 135–141 (2017).

    Article  CAS  Google Scholar 

  36. Venter, A., Sojka, P. E. & Cooks, R. G. Droplet dynamics and ionization mechanisms in desorption electrospray ionization mass spectrometry. Anal. Chem. 78, 8549–8555 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Smith, J. N., Flagan, R. C. & Beauchamp, J. L. Droplet evaporation and discharge dynamics in electrospray ionization. J. Phys. Chem. A 106, 9957–9967 (2002).

    Article  CAS  Google Scholar 

  38. Ganan-Calvo, A. M., Davila, J. & Barrero, A. Current and droplet size in the electrospraying of liquids: scaling laws. J. Aerosol Sci. 28, 249–275 (1997).

    Article  CAS  Google Scholar 

  39. Gong, C. et al. Spontaneous reduction-induced degradation of viologen compounds in water microdroplets and its inhibition by host–guest complexation. J. Am. Chem. Soc. 144, 3510–3516 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Song, X., Meng, Y. & Zare, R. N. Spraying water microdroplets containing 1,2,3-triazole converts carbon dioxide into formic acid. J. Am. Chem. Soc. 144, 16744–16748 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, K.-H., Wei, Z. & Cooks, R. G. Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface. Chem. Sci. 12, 2242–2250 (2021).

    Article  Google Scholar 

  42. Feng, L. et al. Ammonium bicarbonate significantly accelerates the microdroplet reactions of amines with carbon dioxide. Anal. Chem. 93, 15775–15784 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Nam, I., Nam, H. G. & Zare, R. N. Abiotic synthesis of purine and pyrimidine ribonucleosides in aqueous microdroplets. Proc. Natl Acad. Sci. USA 115, 36–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Yan, X., Bain, R. M. & Cooks, R. G. Organic reactions in microdroplets: reaction acceleration revealed by mass spectrometry. Angew. Chem. Int. Ed. 55, 12960–12972 (2016).

    Article  CAS  Google Scholar 

  45. Li, Y. et al. Accelerated forced degradation of pharmaceuticals in levitated microdroplet reactors. Chemistry 23, 7349–7353 (2018).

    Article  Google Scholar 

  46. Chen, H., Eberlin, L. S. & Cooks, R. G. Neutral fragment mass spectra via ambient thermal dissociation of peptide and protein ions. J. Am. Chem. Soc. 129, 5880–5886 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Lee, J. K., Kim, S., Nam, H. G. & Zare, R. N. Microdroplet fusion mass spectrometry for fast reaction kinetics. Proc. Natl Acad. Sci. USA 112, 3898–3903 (2015).

  48. Lhee, S. et al. Spatial localization of charged molecules by salt ions in oil-confined water microdroplets. Sci. Adv. 6, eaba01811 (2020).

    Article  Google Scholar 

  49. Zhang, D., Yuan, X., Gong, C. & Zhang, X. High electric field on water microdroplets catalyzes spontaneous and ultrafast oxidative C-H/N-H cross-coupling. J. Am. Chem. Soc. 144, 16184–16190 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Kathmann, S. M., Kuo, I. & Mundy, C. J. Electronic effects on the surface potential at the vapor–liquid interface of water. J. Am. Chem. Soc. 130, 16556–16561 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Qiu, L. & Cooks, R. G. Simultaneous and spontaneous oxidation and reduction in microdroplets by the water radical cation/anion pair. Angew. Chem. Int. Ed. 61, e202210765 (2022).

    Article  CAS  Google Scholar 

  52. Wei, H. et al. Aerosol microdroplets exhibit a stable pH gradient. Proc. Natl Acad. Sci. USA 115, 7272–7277 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Narendra, N. et al. Quantum mechanical modeling of reaction rate acceleration in microdroplets. J. Phys. Chem. A 124, 4984–4989 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Kozlowski, J. & Zuman, P. Acid–base, hydration–dehydration and keto–enol equilibria in aqueous solutions of α-ketoacids: study by spectroscopy, polarography and linear sweep voltammetry. J. Electroanal. Chem. 343, 43–70 (1992).

    Article  Google Scholar 

  55. Stubbs, R. T., Yadav, M., Krishnamurthy, R. & Springsteen, G. A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of alpha-ketoacids. Nat. Chem. 12, 1016–1022 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma, M. et al. Ultrahigh electrocatalytic conversion of methane at room temperature. Adv. Sci. 4, 1700379 (2017).

    Article  Google Scholar 

  57. Yazdanpour, N. & Sharifnia, S. Photocatalytic conversion of greenhouse gases (CO2 and CH4) using copper phthalocyanine modified TiO2. Sol. Energy Mater. Sol. Cells 118, 1–8 (2013).

    Article  CAS  Google Scholar 

  58. Wang, Y. et al. Insight into the synthesis of alcohols and acids in plasma-driven conversion of CO2 and CH4 over copper-based catalysts. Appl. Catal. B 315, 121583–121595 (2022).

    Article  CAS  Google Scholar 

  59. Juhl, M. & Lee, J. W. Umpolung reactivity of aldehydes toward carbon dioxide. Angew. Chem. Int. Ed. 57, 12318–12322 (2018).

    Article  CAS  Google Scholar 

  60. Miyazaki, M., Shibue, M., Ogino, K., Nakamura, H. & Maeda, H. Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide. Chem. Commun. 2001, 1800–1801 (2001).

  61. Jestila, J. S. & Uggerud, E. Unimolecular dissociation of anions derived from succinic acid (H2Su) in the gas phase: HSu and ClMgSu. Relationship to CO2 fixation. Eur. J. Mass Spectrom. 24, 33–42 (2018).

    Article  CAS  Google Scholar 

  62. Schwarz, H. A. & Dodson, R. W. Equilibrium between hydroxyl radicals and thallium(II) and the oxidation potential of OH(aq). J. Phys. Chem. 88, 3643–3647 (1984).

    Article  CAS  Google Scholar 

  63. He, J. et al. Probing autoxidation of oleic acid at air–water interface: a neglected and significant pathway for secondary organic aerosols formation. Environ. Res. 212, 113232 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Xiong, H., Lee, J. K., Zare, R. N. & Min, W. Strong electric field observed at the interface of aqueous microdroplets. J. Phys. Chem. Lett. 11, 7423–7428 (2020).

    Article  CAS  PubMed  Google Scholar 

  65. Zhu, C., Zeng, X. C., Francisco, J. S. & Gladich, I. Hydration, solvation and isomerization of methylglyoxal at the air/water interface: new mechanistic pathways. J. Am. Chem. Soc. 142, 5574–5582 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Lee, J. K. et al. Spontaneous generation of hydrogen peroxide from aqueous microdroplets. Proc. Natl Acad. Sci. USA 116, 19294–19298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miller, S. L. A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953).

    Article  CAS  PubMed  Google Scholar 

  68. Liu, L., Wei, Q., Zhou, Y. & Ren, X. Using dialkyl amide via forming hydrophobic deep eutectic solvents to separate citric acid from fermentation broth. Green Chem. 22, 2526–2533 (2020).

    Article  CAS  Google Scholar 

  69. Chen, Y. X., Wei, Q. F. & Ren, X. L. The effect of hydrophilic amines on hydrothermal liquefaction of macroalgae residue. Bioresour. Technol. 243, 409–416 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Zhang, X. et al. Rapid monitoring approach for microplastics using portable pyrolysis-mass spectrometry. Anal. Chem. 92, 4656–4662 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Xing, D. et al. Capture of hydroxyl radicals by hydronium cations in water microdroplets. Angew. Chem. Int. Ed. Engl. 61, e202207587 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financially support from National Natural Science Foundation of China grant no. 21904029 to H.Z. and grant no. 22074026 to J.J. We acknowledge assistance from R. N. Zare in providing key suggestions on manuscript organization and acknowledge C. Gao for discussing the reductive carboxylation mechanism.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and J.J. developed the original ideas presented in the manuscript and supervised the research. H.Z., J.J. and Y. Ju designed the experiments and Y. Ju completed the experiments with assistance from W.W., J.L., G.K., K.Y. and X.W. The reductive carboxylation mechanism was developed by J.J., H.Z., Y. Jiang and J.L. and the data analyses were mainly performed by H.Z., Y. Ju and Y. Jiang. The HPLC analysis was completed by Y. Ju and Y. Jiang. The first draft of the paper was written by Y. Ju, H.Z. and J.J. All authors contributed to finalizing the manuscript. All authors have jointly revised the manuscript and agreed to the published version of the paper.

Corresponding authors

Correspondence to Hong Zhang or Jie Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Ecology & Evolution thanks Hong Gil Nam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Comparison of succinate 7 in CO2- and 13CO2-saturated aqueous microdroplets.

a, Experimental setup; the use of the tube between the sprayer and the MS inlet aimed to avoid the interference of atmosphere. b, Potential intermediates and products from nebulization of 7 in CO2- and 13CO2-saturated water solution.

Extended Data Fig. 2 Comparison of propionic acid in CO2- and 13CO2-saturated aqueous microdroplets.

a, Mass spectra of potential intermediates and products in CO2- and 13CO2-saturated aqueous microdroplets. b, Tandem mass spectra of m/z 145 in the case of CO2-saturated solution. c, Tandem mass spectra of m/z 147 in the case of 13CO2-saturated solution. Nebulization of propionic acid in 13CO2-saturated water solution clearly showed peaks of m/z 102 and m/z 147, which was 1 Da and 2 Da shift compared to those with CO2. This was also consisted with that from nebulization of 7 in CO2- and 13CO2-saturated water solution (Extended Data Fig. 1). The tandem mass spectrum of m/z 147 showed a similar pattern compared to that of m/z 145, which was consistent with the standard 9 (Fig. 3a). This suggested that nebulization of propionic acid could also generate 9 and further supported the assumption that initial decarboxylation of 7 generated propionic acid.

Extended Data Fig. 3 Reductive carboxylation of succinate 7 and α-ketoglutarate 9 in acetonitrile microdroplets.

a, Succinate 7. b, α-ketoglutarate 9. c, Expansion showing spectra for m/z 142-148 and m/z 114-120 from nebulization of 7 and 9 using acetonitrile. d, Expansion showing spectra for m/z 142-148 and m/z 114-120 from nebulization of 7 and 9 using water. When acetonitrile was used as solvent, no corresponding products of m/z 145 and 191, originated from 7 and 9, were observed. This suggested that the reductive carboxylation reactions in aprotic solvent was unfavourable. This supported that the important role of water during the reductive carboxylation. When either water or acetonitrile were used as solvents, the reagent radical anions (7•-, m/z 118; 9•-, m/z 146) were not observed and at least that were lower than the detection limitation. Peaks of m/z 118 and 146 in c and d corresponded to the isotope peaks of reagents because the simulation abundance of these peaks were about 5.4 %. Combing with these results and OH• identification63 suggested that the electrons may be mainly derived from OH generated by water splitting. In addition, the formation of OH• at the microdroplet surface was also confirmed by other groups66,71.

Extended Data Fig. 4 Effect of high voltage on reductive carboxylation of α-ketoglutarate 9.

a, Reaction with high voltage of −4.5 kV. b, Reaction without high voltage. c, Reaction with the stainless-steel tube grounded. d, Reaction with peek tube instead of the stainless-steel tube. No voltage was used in c and d. The concentration of 9 was 0.1 mM. The product abundances showed no substantial difference.

Extended Data Fig. 5 Effect of high voltage on reductive carboxylation of succinate 7.

a, Reaction with high voltage of −4.5 kV. b, Reaction without high voltage. c, Reaction with the stainless-steel tube grounded. d, Reaction with peek tube instead of the stainless-steel tube. No voltage was used in c and d. The concentration of 7 was 0.1 mM. From Extended Data Fig. 4 and Fig. 5, the abundances for the corresponding products (m/z 191 and m/z 145) showed no substantial difference. This suggested that in absence of high voltage, the products could be also generated when the reagent solution was nebulized.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Discussion and Tables 1–5.

Reporting Summary

Peer Review File

Supplementary Data 1

Statistical source data for Table 1.

Supplementary Data 2

Statistical source data for Supplementary Figs. 10, 21 and 25 and Tables 2 and 5.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, Y., Zhang, H., Jiang, Y. et al. Aqueous microdroplets promote C–C bond formation and sequences in the reverse tricarboxylic acid cycle. Nat Ecol Evol 7, 1892–1902 (2023). https://doi.org/10.1038/s41559-023-02193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-023-02193-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing