Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dynamic responses of the haematopoietic stem cell niche to diverse stresses

An Author Correction to this article was published on 22 January 2020

This article has been updated

Abstract

Adult haematopoietic stem cells (HSCs) mainly reside in the bone marrow, where stromal and haematopoietic cells regulate their function. The steady state HSC niche has been extensively studied. In this Review, we focus on how bone marrow microenvironment components respond to different insults including inflammation, malignant haematopoiesis and chemotherapy. We highlight common and unique patterns among multiple cell types and their environment and discuss current limitations in our understanding of this complex and dynamic tissue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In the adult life, haematopoiesis happens in the bone marrow microenvironment, a tightly organized tissue in which cells of different origin and metabolic components act to orchestrate this process during homeostasis.
Fig. 2: HSCs are localised within the bone marrow microenvironment where the various components orchestrate HSC maintenance, quiescence and differentiation.

Similar content being viewed by others

Change history

References

  1. Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495, 231–235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Greenbaum, A. et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495, 227–230 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bilic-Curcic, I. et al. Visualizing levels of osteoblast differentiation by a two-color promoter-GFP strategy: type I collagen-GFPcyan and osteocalcin-GFPtpz. Genesis 43, 87–98 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Karsenty, G., Kronenberg, H. M. & Settembre, C. Genetic control of bone formation. Annu. Rev. Cell Dev. Biol. 25, 629–648 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Yamazaki, S. et al. Nonmyelinating schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147, 1146–1158 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Naveiras, O. et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460, 259–263 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishitobi, H. et al. Flk1-GFP BAC Tg mice: an animal model for the study of blood vessel development. Exp. Anim. 59, 615–622 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Claxton, S. et al. Efficient, inducible Cre-recombinase activation in vascular endothelium. Genesis 46, 74–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Alva, J. A. et al. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev. Dyn. 235, 759–767 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell 15, 154–168 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Joseph, C. et al. Deciphering hematopoietic stem cells in their niches: a critical appraisal of genetic models, lineage tracing, and imaging strategies. Cell Stem Cell 13, 520–533 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Tjin, G. et al. Imaging methods used to study mouse and human HSC niches: current and emerging technologies. Bone 119, 19–35 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Mizoguchi, T. et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev. Cell 29, 340–349 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481, 457–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Liu, Y. et al. Osterix-cre labeled progenitor cells contribute to the formation and maintenance of the bone marrow stroma. PLoS One 8, e71318 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kunisaki, Y. et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502, 637–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Visnjic, D. et al. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103, 3258–3264 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Strecker, S., Fu, Y., Liu, Y. & Maye, P. Generation and characterization of Osterix- Cherry reporter mice. Genesis 51, 246–258 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Crane, G. M., Jeffery, E. & Morrison, S. J. Adult haematopoietic stem cell niches. Nat. Rev. Immunol. 17, 573–590 (2017).

    Article  CAS  PubMed  Google Scholar 

  20. Asada, N. et al. Differential cytokine contributions of perivascular haematopoietic stem cell niches. Nat. Cell Biol. 19, 214–223 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, V. W. C. & Scadden, D. T. Heterogeneity of the bone marrow niche. Curr. Opin. Hematol. 23, 331–338 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wei, Q. & Frenette, P. S. Niches for hematopoietic stem cells and their progeny. Immunity 48, 632–648 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Takizawa, H., Boettcher, S. & Manz, M. G. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119, 2991–3002 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Nagai, Y. et al. Toll-like receptors on hematopoietic progenitor cells stimulate innate immune system replenishment. Immunity 24, 801–812 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Massberg, S. et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994–1008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baldridge, M. T., King, K. Y., Boles, N. C., Weksberg, D. C. & Goodell, M. A. Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465, 793–797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vainieri, M. L. et al. Systematic tracking of altered haematopoiesis during sporozoite-mediated malaria development reveals multiple response points. Open Biol. 6, 160038 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Matatall, K. A. et al. Chronic infection depletes hematopoietic stem cells through stress-induced terminal differentiation. Cell Rep. 17, 2584–2595 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rashidi, N. M. et al. In vivo time-lapse imaging shows diverse niche engagement by quiescent and naturally activated hematopoietic stem cells. Blood 124, 79–83 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boettcher, S. et al. Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124, 1393–1403 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Khakpour, S., Wilhelmsen, K. & Hellman, J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun. 21, 827–846 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Prendergast, A. M. et al. IFNα-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica 102, 445–453 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Andonegui, G. et al. Mice that exclusively express TLR4 on endothelial cells can efficiently clear a lethal systemic Gram-negative bacterial infection. J. Clin. Invest. 119, 1921–1930 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Casanova-Acebes, M. et al. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153, 1025–1035 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating toll-like receptor ligands. Immunity 34, 590–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chou, D. B. et al. Stromal-derived IL-6 alters the balance of myeloerythroid progenitors during Toxoplasma gondii infection. J. Leukoc. Biol. 92, 123–131 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schurch, C. M., Riether, C. & Ochsenbein, A. F. Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 14, 460–472 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Day, R. B., Bhattacharya, D., Nagasawa, T. & Link, D. C. Granulocyte colony-stimulating factor reprograms bone marrow stromal cells to actively suppress B lymphopoiesis in mice. Blood 125, 3114–3117 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schajnovitz, A. et al. CXCL12 secretion by bone marrow stromal cells is dependent on cell contact and mediated by connexin-43 and connexin-45 gap junctions. Nat. Immunol. 12, 391–398 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Petit, I. et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3, 687–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Calvi, L. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Terashima, A. et al. Sepsis-induced osteoblast ablation causes immunodeficiency. Immunity 44, 1434–1443 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Imai, T. et al. Cytotoxic activities of CD8+ T cells collaborate with macrophages to protect against blood-stage murine malaria. eLife 4, e04232 (2015).

    Article  PubMed Central  Google Scholar 

  45. Joice, R. et al. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl. Med. 6, 244re5 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lee, M. S. J. et al. Plasmodium products persist in the bone marrow and promote chronic bone loss. Sci. Immunol. 2, eaam8093 (2017).

    Article  PubMed  Google Scholar 

  47. McCabe, A. & MacNamara, K. C. Macrophages: key regulators of steady-state and demand-adapted hematopoiesis. Exp. Hematol. 44, 213–222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hirata, Y. et al. CD150high bone marrow Tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22, 445–453.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Glatman Zaretsky, A. et al. T regulatory cells support plasma cell populations in the bone marrow. Cell Reports 18, 1906–1916 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Chow, A. et al. Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J. Exp. Med. 208, 261–271 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lieschke, G. J. et al. Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84, 1737–1746 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Schuettpelz, L. G. et al. G-CSF regulates hematopoietic stem cell activity, in part, through activation of Toll-like receptor signaling. Leukemia 28, 1851–1860 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Winkler, I. G. et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 116, 4815–4828 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Gregory, C. D. & Devitt, A. The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology 113, 1–14 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schroder, K., Hertzog, P. J., Ravasi, T. & Hume, D. A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. McCabe, A. et al. Macrophage-lineage cells negatively regulate the hematopoietic stem cell pool in response to interferon gamma at steady state and during infection. Stem Cells 33, 2294–2305 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zoller, E. E. et al. Hemophagocytosis causes a consumptive anemia of inflammation. J. Exp. Med. 208, 1203–1214 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Colgan, S. P., Campbell, E. L. & Kominsky, D. J. Hypoxia and mucosal inflammation. Annu. Rev. Pathol. 11, 77–100 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Taylor, C. T. & Colgan, S. P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 17, 774–785 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kwak, H. J. et al. Myeloid cell-derived reactive oxygen species externally regulate the proliferation of myeloid progenitors in emergency granulopoiesis. Immunity 42, 159–171 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu, H. et al. Reactive oxygen species-producing myeloid cells act as a bone marrow niche for sterile inflammation-induced reactive granulopoiesis. J. Immunol. 198, 2854–2864 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Kristinsson, S. Y., Landgren, O., Samuelsson, J., Bjorkholm, M. & Goldin, L. R. Autoimmunity and the risk of myeloproliferative neoplasms. Haematologica 95, 1216–1220 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kristinsson, S. Y. et al. Chronic immune stimulation might act as a trigger for the development of acute myeloid leukemia or myelodysplastic syndromes. J. Clin. Oncol. 29, 2897–2903 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fröhling, S., Scholl, C., Gilliland, D. G. & Levine, R. L. Genetics of myeloid malignancies: pathogenetic and clinical implications. J. Clin. Oncol. 23, 6285–6295 (2005).

    Article  PubMed  CAS  Google Scholar 

  67. Lane, S. W., Scadden, D. T. & Gilliland, D. G. The leukemic stem cell niche: Current concepts and therapeutic opportunities. Blood 114, 1150–1157 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhang, B. et al. Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 21, 577–592 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kode, A. et al. Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature 506, 240–244 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Frisch, B. J. et al. Functional inhibition of osteoblastic cells in an in vivo mouse model of myeloid leukemia. Blood 119, 540–550 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schmidt, T. & Carmeliet, P. Angiogenesis: a target in solid tumors, also in leukemia? Hematology (Am. Soc. Hematol. Educ. Program) 2011, 1–8 (2011).

    Article  Google Scholar 

  73. Kampen, K. R., Ter Elst, A. & de Bont, E. S. Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell. Mol. Life Sci. 70, 1307–1317 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Kusumbe, A. P. et al. Age-dependent modulation of vascular niches for haematopoietic stem cells. Nature 532, 380–384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Itkin, T. et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature 532, 323–328 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kusumbe, A. P., Ramasamy, S. K. & Adams, R. H. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 507, 323–328 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Langen, U. H. et al. Cell-matrix signals specify bone endothelial cells during developmental osteogenesis. Nat. Cell Biol. 19, 189–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Passaro, D. et al. Increased vascular permeability in the bone marrow microenvironment contributes to disease progression and drug response in acute myeloid leukemia. Cancer Cell 32, 324–341 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Duarte, D. et al. Inhibition of endosteal vascular niche remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22, 64–77.e6 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pitt, L. A. et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 27, 755–768 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Passaro, D. et al. CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell 27, 769–779 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Duarte, D. et al. Defining the in vivo characteristics of acute myeloid leukemia cells behavior by intravital imaging. Immunol. Cell Biol. 97, 229–235 (2019).

    Article  PubMed  Google Scholar 

  83. Goulard, M., Dosquet, C. & Bonnet, D. Role of the microenvironment in myeloid malignancies. Cell. Mol. Life Sci. 75, 1377–1391 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Geyh, S. et al. Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia 27, 1841–1851 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. von der Heide, E. K., Neumann, M. & Baldus, C. D. Targeting the leukemic bone marrow microenvironment. Oncotarget 8, 96474–96475 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Baryawno, N. et al. A cellular taxonomy of the bone marrow stroma in homeostasis and leukemia. Cell 177, 1915–1932.e16 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Manshouri, T. et al. Bone marrow stroma-secreted cytokines protect JAK2V617F-mutated cells from the effects of a JAK2 inhibitor. Cancer Res. 71, 3831–3840 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Guarnerio, J. et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat. Commun. 9, 66 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Dong, L. et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature 539, 304–308 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Vianello, F. et al. Bone marrow mesenchymal stromal cells non-selectively protect chronic myeloid leukemia cells from imatinib-induced apoptosis via the CXCR4/CXCL12 axis. Haematologica 95, 1081–1089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tavor, S. et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64, 2817–2824 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Hawkins, E. D. et al. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538, 518–522 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Battula, V. L. et al. AML-induced osteogenic differentiation in mesenchymal stromal cells supports leukemia growth. JCI Insight 2, e90036 (2017).

    Article  PubMed Central  Google Scholar 

  95. Schepers, K. et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13, 285–299 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Raaijmakers, M. H. et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464, 852–857 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Tabe, Y. et al. Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res. 77, 1453–1464 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shafat, M. S., Gnaneswaran, B., Bowles, K. M. & Rushworth, S. A. The bone marrow microenvironment - home of the leukemic blasts. Blood Rev. 31, 277–286 (2017).

    Article  PubMed  Google Scholar 

  99. Cahu, X. et al. Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood Adv. 1, 1760–1772 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Behan, J. W. et al. Adipocytes impair leukemia treatment in mice. Cancer Res. 69, 7867–7874 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Asano, J. et al. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia 25, 1182–1188 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Decker, S. et al. PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1). Mol. Cancer Ther. 13, 1231–1245 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Ruan, J. et al. Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone 57, 10–17 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Boyd, A. L. et al. Acute myeloid leukaemia disrupts endogenous myelo-erythropoiesis by compromising the adipocyte bone marrow niche. Nat. Cell Biol. 19, 1336–1347 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Méndez-Ferrer, S. et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466, 829–834 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Arranz, L. et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature 512, 78–81 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Giannopoulos, K. et al. Characterization of regulatory T cells in patients with B-cell chronic lymphocytic leukemia. Oncol. Rep. 20, 677–682 (2008).

    PubMed  Google Scholar 

  108. Muthu Raja, K. R. et al. Increased T regulatory cells are associated with adverse clinical features and predict progression in multiple myeloma. PLoS One 7, e47077 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Mansour, I., Zayed, R. A., Said, F. & Latif, L. A. Indoleamine 2,3-dioxygenase and regulatory T cells in acute myeloid leukemia. Hematology 21, 447–453 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Kawano, Y. et al. Blocking IFNAR1 inhibits multiple myeloma-driven Treg expansion and immunosuppression. J. Clin. Invest. 128, 2487–2499 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Molldrem, J. J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nat. Med. 6, 1018–1023 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Butt, N. M. et al. Circulating bcr-abl-specific CD8+ T cells in chronic myeloid leukemia patients and healthy subjects. Haematologica 90, 1315–1323 (2005).

    CAS  PubMed  Google Scholar 

  113. Schurch, C., Riether, C., Amrein, M. A. & Ochsenbein, A. F. Cytotoxic T cells induce proliferation of chronic myeloid leukemia stem cells by secreting interferon-gamma. J. Exp. Med. 210, 605–621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yang, L. et al. IFN-γ negatively modulates self-renewal of repopulating human hemopoietic stem cells. J. Immunol. 174, 752–757 (2005).

    Article  CAS  PubMed  Google Scholar 

  115. Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen, X. et al. Induction of myelodysplasia by myeloid-derived suppressor cells. J. Clin. Invest. 123, 4595–4611 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Van Valckenborgh, E. et al. Multiple myeloma induces the immunosuppressive capacity of distinct myeloid-derived suppressor cell subpopulations in the bone marrow. Leukemia 26, 2424–2428 (2012).

    Article  PubMed  Google Scholar 

  118. Giallongo, C. et al. Myeloid derived suppressor cells (MDSCs) are increased and exert immunosuppressive activity together with polymorphonuclear leukocytes (PMNs) in chronic myeloid leukemia patients. PLoS One 9, e101848 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jitschin, R. et al. CLL-cells induce IDOhi CD14+HLA-DRlo myeloid-derived suppressor cells that inhibit T-cell responses and promote TRegs. Blood 124, 750–760 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Giallongo, C. et al. Mesenchymal stem cells (MSC) regulate activation of granulocyte-like myeloid derived suppressor cells (G-MDSC) in chronic myeloid leukemia patients. PLoS One 11, e0158392 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Giallongo, C. et al. Granulocyte-like myeloid derived suppressor cells (G-MDSC) are increased in multiple myeloma and are driven by dysfunctional mesenchymal stem cells (MSC). Oncotarget 7, 85764–85775 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Pyzer, A. R. et al. MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood 129, 1791–1801 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Serafini, P., Mgebroff, S., Noonan, K. & Borrello, I. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res. 68, 5439–5449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hay, N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635–649 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Valsecchi, R. et al. HIF-1alpha regulates the interaction of chronic lymphocytic leukemia cells with the tumor microenvironment. Blood 127, 1987–1997 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Benito, J. et al. Hypoxia-activated prodrug TH-302 targets hypoxic bone marrow niches in preclinical leukemia models. Clin. Cancer Res. 22, 1687–1698 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Das, D. S. et al. A novel hypoxia-selective epigenetic agent RRx-001 triggers apoptosis and overcomes drug resistance in multiple myeloma cells. Leukemia 30, 2187–2197 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Moschoi, R. et al. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128, 253–264 (2016).

    Article  CAS  PubMed  Google Scholar 

  129. Liu, J. et al. Stromal cell-mediated mitochondrial redox adaptation regulates drug resistance in childhood acute lymphoblastic leukemia. Oncotarget 6, 43048–43064 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lagadinou, E. D. et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12, 329–341 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cole, A. et al. Inhibition of the mitochondrial protease ClpP as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 27, 864–876 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Rodriguez, A. M., Nakhle, J., Griessinger, E. & Vignais, M. L. Intercellular mitochondria trafficking highlighting the dual role of mesenchymal stem cells as both sensors and rescuers of tissue injury. Cell Cycle 17, 712–721 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Marlein, C. R. et al. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130, 1649–1660 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Ricciardi, M. R. et al. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood 126, 1925–1929 (2015).

    Article  CAS  PubMed  Google Scholar 

  136. Ye, H. et al. Leukemic stem cells evade chemotherapy by metabolic adaptation to an adipose tissue niche. Cell Stem Cell 19, 23–37 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ehsanipour, E. A. et al. Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine. Cancer Res. 73, 2998–3006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kalaitzidis, D. et al. Amino acid-insensitive mTORC1 regulation enables nutritional stress resilience in hematopoietic stem cells. J. Clin. Invest. 127, 1405–1413 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Lazare, S. et al. Lifelong dietary intervention does not affect hematopoietic stem cell function. Exp. Hematol. 53, 26–30 (2017).

    Article  PubMed  Google Scholar 

  140. Lu, Z. et al. Fasting selectively blocks development of acute lymphoblastic leukemia via leptin-receptor upregulation. Nat. Med. 23, 79–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Ghosh, J. & Kapur, R. Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia. Exp. Hematol. 50, 13–21 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Cimmino, L. et al. Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170, 1079–1095.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wood, M. E. et al. Second malignant neoplasms: assessment and strategies for risk reduction. J. Clin. Oncol. 30, 3734–3745 (2012).

    Article  PubMed  Google Scholar 

  145. Green, D. E. & Rubin, C. T. Consequences of irradiation on bone and marrow phenotypes, and its relation to disruption of hematopoietic precursors. Bone 63, 87–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  146. Kondo, H. et al. Total-body irradiation of postpubertal mice with 137 Cs acutely compromises the microarchitecture of cancellous bone and increases osteoclasts. Radiat. Res. 171, 283–289 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Willey, J. S. et al. Early increase in osteoclast number in mice after whole-body irradiation with 2 Gy X rays. Radiat. Res. 170, 388–392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mauch, P. et al. Hematopoietic stem cell compartment: acute and late effects of radiation therapy and chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 31, 1319–1339 (1995).

    Article  CAS  PubMed  Google Scholar 

  149. Gong, B., Oest, M. E., Mann, K. A., Damron, T. A. & Morris, M. D. Raman spectroscopy demonstrates prolonged alteration of bone chemical composition following extremity localized irradiation. Bone 57, 252–258 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Rieger, K. et al. Mesenchymal stem cells remain of host origin even a long time after allogeneic peripheral blood stem cell or bone marrow transplantation. Exp. Hematol. 33, 605–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Dickhut, A. et al. Mesenchymal stem cells obtained after bone marrow transplantation or peripheral blood stem cell transplantation originate from host tissue. Ann. Hematol. 84, 722–727 (2005).

    Article  PubMed  Google Scholar 

  152. Abbuehl, J.-P., Tatarova, Z., Held, W. & Huelsken, J. Long-term engraftment of primary bone marrow stromal cells repairs niche damage and improves hematopoietic stem cell transplantation. Cell Stem Cell 21, 241–255.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  153. Cao, X. et al. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc. Natl. Acad. Sci. USA 108, 1609–1614 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zhou, B. O. et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat. Cell Biol. 19, 891–903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hooper, A. T. et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGFR2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 4, 263–274 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Poulos, M. G. et al. Endothelial jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep. 4, 1022–1034 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Bowers, E. et al. Granulocyte-derived TNFα promotes vascular and hematopoietic regeneration in the bone marrow. Nat. Med. 24, 95–102 (2018).

    Article  CAS  PubMed  Google Scholar 

  158. Kaur, S. et al. Self-repopulating recipient bone marrow resident macrophages promote long-term hematopoietic stem cell engraftment. Blood 132, 735–749 (2018).

    Article  CAS  PubMed  Google Scholar 

  159. Gencheva, M. et al. Bone marrow osteoblast vulnerability to chemotherapy. Eur. J. Haematol. 90, 469–478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Tikhonova, A. N. et al. The bone marrow microenvironment at single-cell resolution. Nature 569, 222–228 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Itkin, T. et al. FGF-2 expands murine hematopoietic stem and progenitor cells via proliferation of stromal cells, c-Kit activation, and CXCL12 down-regulation. Blood 120, 1843–1855 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Zhao, M. et al. Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat. Med. 20, 1321–1326 (2014).

    Article  CAS  PubMed  Google Scholar 

  163. Hérault, A. et al. Myeloid progenitor cluster formation drives emergency and leukaemic myelopoiesis. Nature 544, 53–58 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Lucas, D. et al. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat. Med. 19, 695–703 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Palen, K., Thakar, M., Johnson, B. D. & Gershan, J. A. Bone marrow-derived CD8+ T cells from pediatric leukemia patients express PD1 and expand ex vivo following induction chemotherapy. J. Pediatr. Hematol. Oncol. 41, 648–652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wemeau, M. et al. Calreticulin exposure on malignant blasts predicts a cellular anticancer immune response in patients with acute myeloid leukemia. Cell Death Dis. 1, e104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fucikova, J. et al. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 71, 4821–4833 (2011).

    Article  CAS  PubMed  Google Scholar 

  168. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Ersvaer, E., Liseth, K., Skavland, J., Gjertsen, B. T. & Bruserud, O. Intensive chemotherapy for acute myeloid leukemia differentially affects circulating TC1, TH1, TH17 and TREG cells. BMC Immunol. 11, 38 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Salem, M. L. et al. Chemotherapy alters the increased numbers of myeloid-derived suppressor and regulatory T cells in children with acute lymphoblastic leukemia. Immunopharmacol. Immunotoxicol. 40, 158–167 (2018).

    Article  CAS  PubMed  Google Scholar 

  171. Barrett, D. M., Teachey, D. T. & Grupp, S. A. Toxicity management for patients receiving novel T-cell engaging therapies. Curr. Opin. Pediatr. 26, 43–49 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Grupp, S. A. et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Coutu, D. L., Kokkaliaris, K. D., Kunz, L. & Schroeder, T. Three-dimensional map of nonhematopoietic bone and bone-marrow cells and molecules. Nat. Biotechnol. 35, 1202–1210 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Gligorijevic, B. et al. Intravital imaging and photoswitching in tumor invasion and intravasation microenvironments. Micros. Today 18, 34–37 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Carlson, A. L. et al. Tracking single cells in live animals using a photoconvertible near-infrared cell membrane label. PLoS One 8, e69257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Turcotte, R., Wu, J. W. & Lin, C. P. Intravital multiphoton photoconversion with a cell membrane dye. J. Biophotonics 10, 206–210 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Alieva, M., Ritsma, L., Giedt, R. J., Weissleder, R. & van Rheenen, J. Imaging windows for long-term intravital imaging: general overview and technical insights. Intravital 3, e29917 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This Review was supported in parts by the Francis Crick Institute, which receives its core funding from Cancer Research UK (FC001045), the UK Medical Research Council (FC001045) and the Wellcome Trust (FC001045) to D.B. and by grants from the European Research Council (ERC STG 337066), the British Biology and Biotechnology Research council (BB/i004033/1) and Bloodwise (15031 and 15040), Cancer Research UK (C36195/A26770) and the Wellcome Trust (212304/Z/18/Z) to C.L.C. A.B. and D.P. are recipients of the Junior EHA fellowship. M.L.R.H. was funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cristina Lo Celso or Dominique Bonnet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batsivari, A., Haltalli, M.L.R., Passaro, D. et al. Dynamic responses of the haematopoietic stem cell niche to diverse stresses. Nat Cell Biol 22, 7–17 (2020). https://doi.org/10.1038/s41556-019-0444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-019-0444-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing