Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CAR-T cells targeting a nucleophosmin neoepitope exhibit potent specific activity in mouse models of acute myeloid leukaemia

An Author Correction to this article was published on 16 December 2020

This article has been updated

Abstract

Therapies employing chimeric antigen receptor T cells (CAR-T cells) targeting tumour-associated antigens (TAAs) can lead to on-target–off-tumour toxicity and to resistance, owing to TAA expression in normal tissues and to TAA expression loss in tumour cells. These drawbacks can be circumvented by CAR-T cells targeting tumour-specific driver gene mutations, such as the four-nucleotide duplication in the oncogene nucleophosmin (NPM1c), which creates a neoepitope presented by the human leukocyte antigen with the A2 serotype (HLA-A2) that has been observed in about 35% of patients with acute myeloid leukaemia (AML). Here, we report a human single-chain variable fragment (scFv), identified via yeast surface display, that specifically binds to the NPM1c epitope–HLA-A2 complex but not to HLA-A2 or to HLA-A2 loaded with control peptides. In vitro and in mice, CAR-T cells with the scFv exhibit potent cytotoxicity against NPM1c+HLA-A2+ leukaemia cells and primary AML blasts, but not NPM1cHLA-A2+ leukaemia cells or HLA-A2 tumour cells. Therapies using NPM1c CAR-T cells for the treatment of NPM1c+HLA-A2+ AML may limit on-target–off-tumour toxicity and tumour resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isolation of human scFv specific for the AIQ–HLA-A2 complex by yeast surface display.
Fig. 2: Specific and high-affinity binding of YG1 scFv–Fc to the AIQ–HLA-A2 complex on AML cells.
Fig. 3: Generation of NPM1c CAR-T cells specific to the AIQ–HLA-A2 complex.
Fig. 4: NPM1c CAR-T cells specifically kill HLA-A2+NPM1c+ AML cells in vitro.
Fig. 5: NPM1c CAR-T cell therapy reduces leukaemia burden and prolongs survival.
Fig. 6: NPM1c CAR-T cells reduce the leukaemia burden in blood, spleen, bone marrow and liver.
Fig. 7: NMP1c CAR-T cells effectively kill primary human AML blasts in vitro and in vivo.

Similar content being viewed by others

Data availability

The data that support the main findings of this study are available within the paper and its Supplementary Information. Raw data generated for this study are available in Figshare with the identifier https://doi.org/10.6084/m9.figshare.12922520 (ref. 47).

Change history

References

  1. Coulie, P. G., Van den Eynde, B. J., van der Bruggen, P. & Boon, T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer 14, 135–146 (2014).

    CAS  PubMed  Google Scholar 

  2. Srivastava, S. & Riddell, S. R. Chimeric antigen receptor T cell therapy: challenges to bench-to-bedside efficacy. J. Immunol. 200, 459–468 (2018).

    CAS  PubMed  Google Scholar 

  3. Blankenstein, T., Leisegang, M., Uckert, W. & Schreiber, H. Targeting cancer-specific mutations by T cell receptor gene therapy. Curr. Opin. Immunol. 33, 112–119 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  5. Van der Lee, D. I. et al. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J. Clin. Invest. 129, 774–785 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Verdegaal, E. M. et al. Neoantigen landscape dynamics during human melanoma–T cell interactions. Nature 536, 91–95 (2016).

    CAS  PubMed  Google Scholar 

  7. Thomas, D. & Majeti, R. Biology and relevance of human acute myeloid leukemia stem cells. Blood 129, 1577–1585 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dombret, H. & Gardin, C. An update of current treatments for adult acute myeloid leukemia. Blood 127, 53–61 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dohner, H., Weisdorf, D. J. & Bloomfield, C. D. Acute myeloid leukemia. N. Engl. J. Med. 373, 1136–1152 (2015).

    PubMed  Google Scholar 

  10. Ossenkoppele, G. J., Janssen, J. J. & van de Loosdrecht, A. A. Risk factors for relapse after allogeneic transplantation in acute myeloid leukemia. Haematologica 101, 20–25 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ley, T. J. et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

    PubMed  Google Scholar 

  12. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Falini, B. et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N. Engl. J. Med. 352, 254–266 (2005).

    CAS  PubMed  Google Scholar 

  16. Greiner, J. et al. Mutated regions of nucleophosmin 1 elicit both CD4+ and CD8+ T-cell responses in patients with acute myeloid leukemia. Blood 120, 1282–1289 (2012).

    CAS  PubMed  Google Scholar 

  17. Greiner, J. et al. Immune responses against the mutated region of cytoplasmatic NPM1 might contribute to the favorable clinical outcome of AML patients with NPM1 mutations (NPM1mut). Blood 122, 1087–1088 (2013).

    CAS  PubMed  Google Scholar 

  18. Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006).

    CAS  PubMed  Google Scholar 

  19. Choo, J. A., Liu, J., Toh, X., Grotenbreg, G. M. & Ren, E. C. The immunodominant influenza A virus M158–66 cytotoxic T lymphocyte epitope exhibits degenerate class I major histocompatibility complex restriction in humans. J. Virol. 88, 10613–10623 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Van Deventer, J. A., Kelly, R. L., Rajan, S., Wittrup, K. D. & Sidhu, S. S. A switchable yeast display/secretion system. Protein Eng. Des. Sel. 28, 317–325 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Quentmeier, H. et al. Cell line OCI/AML3 bears exon-12 NPM gene mutation-A and cytoplasmic expression of nucleophosmin. Leukemia 19, 1760–1767 (2005).

    CAS  PubMed  Google Scholar 

  22. Lorente, E., Garcia, R. & Lopez, D. Allele-dependent processing pathways generate the endogenous human leukocyte antigen (HLA) class I peptide repertoire in transporters associated with antigen processing (TAP)-deficient cells. J. Biol. Chem. 286, 38054–38059 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Leskov, I. et al. Rapid generation of human B-cell lymphomas via combined expression of myc and Bcl2 and their use as a preclinical model for biological therapies. Oncogene 32, 1066–1072 (2013).

    CAS  PubMed  Google Scholar 

  24. Matsueda, S. et al. Identification of prostate-specific G-protein coupled receptor as a tumor antigen recognized by CD8+ T cells for cancer immunotherapy. PLoS ONE 7, e45756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jennifer, B., Carl, H. J., Andreas, L., Marcela, M. & John, S. Treatment of cancer using humanized anti-CD19 chimeric antigen receptor. US patent 20140271635A1[P] (2014).

  26. Hosken, N. A. & Bevan, M. J. Defective presentation of endogenous antigen by a cell line expressing class I molecules. Science 248, 367–370 (1990).

    CAS  PubMed  Google Scholar 

  27. Bossi, G. et al. Examining the presentation of tumor-associated antigens on peptide-pulsed T2 cells. Oncoimmunology 2, e26840 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Pallasch, C. P. et al. Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 156, 590–602 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, Q., Khoury, M. & Chen, J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage cells in humanized mice. Proc. Natl Acad. Sci. USA 106, 21783–21788 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Shah, N. N. & Fry, T. J. Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16, 372–385 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Salmikangas, P., Kinsella, N. & Chamberlain, P. Chimeric antigen receptor T-cells (CAR T-cells) for cancer immunotherapy—moving target for industry? Pharm. Res. 35, 152 (2018).

    PubMed  PubMed Central  Google Scholar 

  32. Brudno, J. N. & Kochenderfer, J. N. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 34, 45–55 (2019).

    CAS  PubMed  Google Scholar 

  33. Gill, S. et al. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells. Blood 123, 2343–2354 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kenderian, S. S. et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 29, 1637–1647 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    PubMed  Google Scholar 

  36. Watanabe, K. et al. Target antigen density governs the efficacy of anti-CD20-CD28-CD3 ζ chimeric antigen receptor-modified effector CD8+ T cells. J. Immunol. 194, 911–920 (2015).

    CAS  PubMed  Google Scholar 

  37. Walker, A. J. et al. Tumor antigen and receptor densities regulate efficacy of a chimeric antigen receptor targeting anaplastic lymphoma kinase. Mol. Ther. 25, 2189–2201 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dubrovsky, L. et al. T cell receptor mimic antibodies for cancer therapy. Oncoimmunology 5, e1049803 (2016).

    PubMed  Google Scholar 

  39. Watanabe, K., Kuramitsu, S., Posey, A. J. & June, C. H. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T cell biology. Front. Immunol. 9, 2486 (2018).

    PubMed  PubMed Central  Google Scholar 

  40. Zhang, J. & Wang, L. The emerging world of TCR-T cell trials against cancer: a systematic review. Technol. Cancer Res. Treat. https://doi.org/10.1177%2F1533033819831068 (2019).

  41. Morris, E. C. & Stauss, H. J. Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood 127, 3305–3311 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Amir, A. L. et al. PRAME-specific Allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clin. Cancer Res. 17, 5615–5625 (2011).

    CAS  PubMed  Google Scholar 

  43. Provasi, E. et al. Editing T cell specificity towards leukemia by zinc finger nucleases and lentiviral gene transfer. Nat. Med. 18, 807–815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Bendle, G. M. et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16, 565–570 (2010).

    CAS  PubMed  Google Scholar 

  45. Van Loenen, M. M. et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc. Natl Acad. Sci. USA 107, 10972–10977 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Matsui, K. et al. Low affinity interaction of peptide-MHC complexes with T cell receptors. Science 254, 1788–1791 (1991).

    CAS  PubMed  Google Scholar 

  47. Xie, G. et al. Dataset for CAR-T cells targeting a nucleophosmin neoepitope exhibit potent specific activity in mouse models of acute myeloid leukaemia (Figshare, 2020); https://doi.org/10.6084/m9.figshare.12922520

Download references

Acknowledgements

We are grateful to K. D. Wittrup and A. W. Tisdale for the yeast display library and yeast display/secretion system. We thank B. Turner and S. A. Nordeen for assistance with the Octet biolayer interferometry experiment, V. Spanoudaki for assisting with mouse BLI and the Koch Institute Flow Cytometry Core for assistance. This work was supported in part by National Institutes of Health grant nos. AI69208, CA197605 and NS104315, the Ivan R. Cottrell Professorship and Research Fund, Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute, National Institutes of Health Pre-Doctoral Training Grant T32GM007287 and a gift from C2Y Therapeutics.

Author information

Authors and Affiliations

Authors

Contributions

J.C. conceived of the idea and provided experimental advice and funding support. J.C. and G.X. designed the study. G.X. designed and performed the isolation of AIQ–HLA-A2-specific scFv using the yeast display scFv library. G.X., N.A.I. and Y. Li designed and generated the lentivirus vectors. G.X. and N.A.I. performed scFv–Fc protein production and characterization and determined scFV–Fc affinity by biolayer interferometry. G.X. and D.B. performed the CAR-T-cell production and characterization studies. B.J. and H.D. performed tissue preparation for flow cytometry analysis. G.X., B.J., Y. Li and H.D. performed the flow cytometry analysis. G.X. conducted the in vivo tumour studies and BLI. N.A.I. performed the western blot assay. G.X., H.D., Y. Liang and R.R. prepared and analysed the primary AML samples. G.X. prepared the figures and performed the statistical analyses. G.X. and J.C. wrote the manuscript.

Corresponding author

Correspondence to Jianzhu Chen.

Ethics declarations

Competing interests

The authors have filed a provisional patent application on the identified scFv and its applications.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–8 and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, G., Ivica, N.A., Jia, B. et al. CAR-T cells targeting a nucleophosmin neoepitope exhibit potent specific activity in mouse models of acute myeloid leukaemia. Nat Biomed Eng 5, 399–413 (2021). https://doi.org/10.1038/s41551-020-00625-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-020-00625-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer