Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene and cell therapy on the acquisition and relapse-like binge drinking in a model of alcoholism: translational options

Abstract

Studies reviewed show that lentiviral gene therapy directed either at inhibiting the synthesis of brain acetaldehyde generated from ethanol or at degrading brain acetaldehyde fully prevent ethanol intake by rats bred for their high alcohol preference. However, after animals have chronically consumed alcohol, the above gene therapy did not inhibit alcohol intake, indicating that in the chronic ethanol intake condition brain acetaldehyde is no longer the compound that generates the continued alcohol reinforcement. Oxidative stress and neuroinflammation generated by chronic ethanol intake are strongly associated with the perpetuation of alcohol consumption and alcohol relapse “binge drinking”. Mesenchymal stem cells, referred to as guardians of inflammation, release anti-inflammatory cytokines and antioxidant products. The intravenous delivery of human mesenchymal stem cells or the intranasal administration of mesenchymal stem cell-generated exosomes reverses both (i) alcohol-induced neuro-inflammation and (ii) oxidative stress, and greatly (iii) inhibits (80–90%) chronic alcohol intake and relapse binge-drinking. The therapeutic effect of mesenchymal stem cells is mediated by increased levels of the brain GLT-1 glutamate transporter, indicating that glutamate signaling is pivotal for alcohol relapse. Human mesenchymal stem cells and the products released by these cells may have translational value in the treatment of alcohol-use disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mardones J, Segovia-Riquelme N. Thirty-two years of selection of rats by ethanol preference: UChA and UChB strains. Neurobehav Toxicol Teratol. 1983;5:171–8.

    CAS  PubMed  Google Scholar 

  2. Quintanilla ME, Israel Y, Sapag A, Tampier L. The UChA and UChB rat lines: metabolic and genetic differences influencing alcohol intake. Addict Biol. 2006;11:310–23.

    CAS  PubMed  Google Scholar 

  3. Bell RL, Rodd ZA, Lumeng L, Murphy JM, McBride WJ. The alcohol-preferring P rat and animal models of excessive alcohol drinking. Addict Biol. 2006;11:270–88.

    PubMed  Google Scholar 

  4. Colombo G, Lobina C, Carai MA, Gessa GL. Phenotypic characterization of genetically selected Sardinian alcohol prferring rats (sp) and non-preferring (sNP) rats. Addict Biol. 2006;11:324–38.

    PubMed  Google Scholar 

  5. Britton RS, Israel Y. Effect of 6-n-propyl-2-thiouracil on the rate of ethanol metabolism in rats treated chronically with ethanol. Biochem Pharmacol. 1980;29:2951–5.

    CAS  PubMed  Google Scholar 

  6. Quertemont E, Tambour S. Is ethanol a pro-drug. The role of acetaldehyde in the central effects of ethanol. Trends Pharmacol. 2004;25:130–4.

    CAS  Google Scholar 

  7. Zimatkin SM, Pronko SP, Vasiliou V, Gonzalez FJ, Deitrich RA. Enzymatic mechanisms of ethanol oxidation in the brain. Alcohol Clin Exp Res. 2006;30:1500–5.

    CAS  PubMed  Google Scholar 

  8. Aragon CM, Amit Z. The effect of 3-amino-1,2,4-triazole on voluntary ethanol consumption: evidence for brain catalase involvement in the mechanism of action. Neuropharmacology. 1992a;31:709–12.

    CAS  PubMed  Google Scholar 

  9. Rotzinger S, Smith BR, Amit Z. Catalase inhibition attenuates the acquisition of ethanol and saccharin-quinine consumption in laboratory rats. Behav Pharmacol. 1994;5:203–9.

    CAS  PubMed  Google Scholar 

  10. Tampier L, Quintanilla ME, Mardones J. Effects of aminotriazole on ethanol, water, and food intake and on brain catalase in UChA and UChB rats. Alcohol. 1995;12:341–4.

    CAS  PubMed  Google Scholar 

  11. Orrico A, Hipólito L, Sánchez-Catalán MJ, Martí-Prats L, Zornoza T, Granero L, et al. Efficacy of D-penicillamine, a sequestering acetaldehyde agent, in the prevention of alcohol relapse-like drinking in rats. Psychopharmacology. 2013;228:563–75.

    CAS  PubMed  Google Scholar 

  12. Peana AT, Porcheddu V, Bennardini F, Carta A, Rosas M, Acquas E. Role of ethanol-derived acetaldehyde in operant oral self-administration of ethanol in rats. Psychopharmacology. 2015;232:4269–76.

    CAS  PubMed  Google Scholar 

  13. Rodd ZA, Bell RL, Zhang Y, Murphy JM, Goldstein A, Zaffaroni A, et al. Regional heterogeneity for the intracranial self-administration of ethanol and acetaldehyde within the ventral tegmental area of alcohol-preferring (P) rats: involvement of dopamine and serotonin. Neuropsychopharmacology. 2005;30:330–8.

    CAS  PubMed  Google Scholar 

  14. Acquas E, Salamone JD, Correa M (eds). Ethanol, its active metabolites and their mechanisms of actions: Neurophysiological and Behavioral Effects. Front Behav Neurosci, 2018;12:95. https://doi.org/10.3389/fnbeh.2018.00095. Laussane: Frontiers Media https://doi.org/10.3389/978-2-88945-516-4.

  15. Karahanian E, Quintanilla ME, Tampier L, Rivera-Meza M, Bustamante D, Gonzalez-Lira V, et al. Ethanol as a prodrug: brain metabolism of ethanol mediates its reinforcing effects. Alcohol Clin Exp Res. 2011;35:606–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Chiara G, Bassareo V. Reward system and addiction: what dopamine does and doesn’t do. Curr Opin Pharmacol. 2007;1:69–76.

    Google Scholar 

  17. Karahanian E, Rivera-Meza M, Tampier L, Quintanilla ME, Herrera-Marschitz M, Israel Y. Long-term inhibition of ethanol intake by the administration of an aldehyde dehydrogenase-2 (ALDH2)-coding lentiviral vector into the ventral tegmental area of rats. Addict Biol. 2015;20:336–44.

    CAS  PubMed  Google Scholar 

  18. Quintanilla ME, Tampier L, Karahanian E, Rivera-Meza M, Herrera-Marschitz M, Israel Y. Reward and relapse: complete gene-induced dissociation in an animal model of alcoholism. Alcohol Clin Exp Res. 2012;36:517–22.

    CAS  PubMed  Google Scholar 

  19. Tabakoff B, Anderson RA, Ritzmann RF. Brain acetaldehyde after ethanol administration. Biochem Pharmacol. 1976;25:1305–9.

    CAS  PubMed  Google Scholar 

  20. Klyosov AA. Kinetics and specificity of human liver aldehyde dehydrogenases toward aliphatic, aromatic, and fused polycyclic aldehydes. Biochemistry. 1996;35:4457–67.

    CAS  PubMed  Google Scholar 

  21. Chen CC, Lu RB, Chen YC, Wang MF, Chang YC, Li TK, et al. Interaction between the functional polymorphisms of the alcohol-metabolizing genes in protection against alcoholism. Am J Hum Genet. 1999;65:795–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Thomasson HR, Edenberg HJ, Crabb DW, Mai XL, Jerome RE, Li TK, et al. Alcohol and acetaldehyde dehydrogenase genotypes and alcoholism in Chinese man. Am J Hum Genet. 1991;48:677–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ocaranza P, Quintanilla ME, Tampier L, Karahanian E, Sapag A, Israel Y. Gene therapy reduces ethanol intake in an animal model of alcohol dependence. Alcohol Clin Exp Res. 2008;32:52–57.

    CAS  PubMed  Google Scholar 

  24. Garver E, Tu Gc, Cao QN, Aini M, Zhou F, Israel Y. Eliciting the low-activity aldehyde dehydrogenase Asian phenotype by an antisense mechanism results in an aversion to ethanol. J Exp Med. 2001;194:571–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sapag A, Irrazábal T, Lobos-González L, Muñoz-Brauning CR, Quintanilla ME, Tampier L. Hairpin ribozyme genes curtail alcohol drinking: from rational design to in vivo effects in the rat. Mol Ther Nucleic Acids. 2016;7:e335.

    Google Scholar 

  26. Sanchez AC, Li C, Andrews B, Asenjo JA, Samulski RJ. AAV Gene therapy for alcoholism: inhibition of mitochondrial aldehyde dehydrogenase enzyme expression in hepatoma cells. Hum Gene Ther. 2017 28 :717–25. https://doi.org/10.1089/hum.2017.043.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Thapa B, Kumar P, Zeng H, Narain R. Asialoglycoprotein receptor-mediated gene delivery to hepatocytes using galactosylated polymers. Biomacromolecules. 2015;16:3008–20.

    CAS  PubMed  Google Scholar 

  28. Liu K, Song G, Zhu X, Yang X, Shen Y, Wang W, et al. Association between ALDH2 Glu487Lys polymorphism and the risk of esophageal cancer. Medicine. 2017;96:e6111.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Israel Y, Hollander O, Sanchez-Craig M, Booker S, Miller V, Gingrich R, et al. Screening for problem drinking and counseling by the primary care physician-nurse team. Alcohol Clin Exp Res. 1996;20:1443–50.

    CAS  PubMed  Google Scholar 

  30. Knox J, Wall M, Witkiewitz K, Kranzler HR, Falk D, Litten R, et al. Alcohol Clinical Trials (ACTIVE) Workgroup. Reduction in Nonabstinent WHO Drinking Risk Levels and Change in Risk for Liver Disease and Positive AUDIT-C Scores: Prospective 3-Year Follow-Up Results in the U.S. General Population. Alcohol Clin Exp Res. 2018;42:2256–65. https://doi.org/10.1111/acer.13884.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Crews FT, Vetreno RP. Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology. 2016;233:1543–57.

    CAS  PubMed  Google Scholar 

  32. Montesinos J, Alfonso-Loeches S, Guerri C. Impact of the innate immune response in the actions of ethanol on the central nervous system. Alcohol Clin Exp Res. 2016;40:2260–70.

    CAS  PubMed  Google Scholar 

  33. Ferrier L, Berard F, Debrauwer L, Chabo C, Langella P, Bueno L, et al. Impairment of the intestinal barrier by ethanol involves enteric microflora and mast cell activation in rodents. Am J Pathol. 2006;168:1148–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia. 2007;55:453–62.

    PubMed  PubMed Central  Google Scholar 

  35. Cunha-Oliveira T, Rego AC, Oliveira CR. Oxidative stress and drugs of abuse: an update. Org Chem. 2013;10:1–14.

    Google Scholar 

  36. Das SK, Vasudevan D. Alcohol-induced oxidative stress. Life Sci. 2007;81:177–87.

    CAS  PubMed  Google Scholar 

  37. Ezquer F, Quintanilla ME, Morales P, Ezquer M, Lespay-Rebolledo C, Herrera-Marschitz, et al. Activated Mesenchymal stem cell administration inhibits alcohol drinking and supresses relapse-like drinking in high-alcohol drinker rats. Addiction Biol. 2017;18, https://doi.org/10.1111/adb.12572.

    PubMed  Google Scholar 

  38. Kastl L, Sauer SW, Beissbarth R, Becker MS, Süss D, Krammer PH, et al. TNF-α mediates mitochondrial uncoupling and enhances ROS dependent cell migration via NF-kB activation in liver cells. FEBS Lett. 2014;588:175–83.

    CAS  PubMed  Google Scholar 

  39. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C. Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci. 2010;30:8285–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Blednov YA, Benavidez JM, Geil C, Perra S, Morikawa H, Harris RA. Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun. 2011;1 Suppl :S92–S105. https://doi.org/10.1016/j.bbi.2011.01.008.

    Google Scholar 

  41. McCarthy GM, Warden AS, Bridges CR, Blednov YA, Harris RA. Chronic ethanol consumption: role of TLR3/TRIF-dependent signaling. Addict Biol. 2018;23:889–903. https://doi.org/10.1111/adb.12539.

    Article  CAS  PubMed  Google Scholar 

  42. Leclercq S, de Timary P, Delzenne NM, Stärkel P. The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry. 2017;7:e1048 https://doi.org/10.1038/tp.2017.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sari Y, Toalston JE, Rao PSS, Bell RL. Effects of ceftriaxone on ethanol, nicotine or sucrose intake by alcohol-preferring (P) rats and its association with GLT-1 expression. Neuroscience. 2016;326:117–25.

    CAS  PubMed  Google Scholar 

  44. Trotti D, Danbolt NC, Volterra A. Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration? Trends Pharmacol Sci. 1998;9:328–34.

    Google Scholar 

  45. Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, et al. The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Abeta1-42. J Neurochem. 2001;78:413–6.

    CAS  PubMed  Google Scholar 

  46. Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012;20:14–20.

    CAS  PubMed  Google Scholar 

  47. Israel Y, Ezquer F, Quintanilla ME, Morales P, Ezquer M, Herrera-Marschitz M. Intracerebral Stem cell administration inhibits relapse-like alcohol drinking in rats. Alcohol Alcohol. 2016;52:1–4.

    PubMed  Google Scholar 

  48. Ezquer F, Quintanilla ME, Morales P, Ezquer M, Lespay-Rebolledo C, Herrera-Marschitz, et al. Activated mesenchymal stem cell administration inhibits chronic alcohol drinking and suppresses relapse-like drinking in high-alcohol drinker rats. Addict Biol. 2019;24:17–27. https://doi.org/10.1111/adb.12572.

    Article  CAS  PubMed  Google Scholar 

  49. Ezquer F, Morales P, Quintanilla ME, Santapau D, Lespay-Rebolledo C, Ezquer M, et al. Intravenous administration of anti-inflammatory mesenchymal stem cell spheroids reduces chronic alcohol intake and abolishes binge-drinking. Sci Rep. 2018a;8:4325 https://doi.org/10.1038/s41598-018-22750-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, Pascual CY, Aller MA, Arias J, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med. 2012;12:574–91.

    PubMed  Google Scholar 

  51. Ezquer F, Quintanilla ME, Morales P, Santapau D, Ezquer M, Kogan MJ, et al. Intranasal delivery of mesenchymal stem cell-derived exosomes reduces oxidative stress and markedly inhibits ethanol consumption and post-deprivation relapse drinking. Addict Biol. 2018b. https://doi.org/10.1111/adb.12675.

    PubMed  Google Scholar 

  52. Volkman R, Offen D. Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells. 2017;35:1867–80.

    PubMed  Google Scholar 

Download references

Acknowledgements

Studies presented were supported by NIAAA R01AA 10630, ICM-P99-03, Fondecyt #1080447, #1095021; #1130012, #1150589, #1170712, and #1180042 (Chile).

Author contributions

YI and MEQ drafted the review and all authors contributed to improving the text and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yedy Israel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yedy Israel, Quintanilla, M.E., Ezquer, F. et al. Gene and cell therapy on the acquisition and relapse-like binge drinking in a model of alcoholism: translational options. Gene Ther 26, 407–417 (2019). https://doi.org/10.1038/s41434-019-0064-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-019-0064-9

This article is cited by

Search

Quick links