Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Carbohydrates, glycemic index and diabetes mellitus

Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials

Abstract

Background/objectives

Nonnutritive sweeteners (NNSs) are zero- or low-calorie alternatives to nutritive sweeteners, such as table sugars. A systematic review and meta-analysis of randomized controlled trials was conducted to quantitatively synthesize existing scientific evidence on the glycemic impact of NNSs.

Subjects/methods

PubMed and Web of Science databases were searched. Two authors screened the titles and abstracts of candidate publications. The third author was consulted to resolve discrepancies. Twenty-nine randomized controlled trials, with a total of 741 participants, were included and their quality assessed. NNSs under examination included aspartame, saccharin, steviosides, and sucralose. The review followed the PRISMA guidelines.

Results

Meta-analysis was performed to estimate and track the trajectory of blood glucose concentrations over time after NNS consumption, and to test differential effects by type of NNS and participants’ age, weight, and disease status. In comparison with the baseline, NNS consumption was not found to increase blood glucose level, and its concentration gradually declined over the course of observation following NNS consumption. The glycemic impact of NNS consumption did not differ by type of NNS but to some extent varied by participants’ age, body weight, and diabetic status.

Conclusions

NNS consumption was not found to elevate blood glucose level. Future studies are warranted to assess the health implications of frequent and chronic NNS consumption and elucidate the underlying biological mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. An R. Health care expenses in relation to obesity and smoking among US adults by gender, race/ethnicity, and age group: 1998–2011. Public Health. 2015;129:29–36.

    Article  CAS  Google Scholar 

  2. Fryar CD, Carroll MD, Ogden C. Prevalence of overweight and obesity among children and adolescents aged 2–19 years: United States, 1963–1965 through 2013–2014, 2016, [Available from: https://www.cdc.gov/nchs/data/hestat/obesity_child_13_14/obesity_child_13_14.pdf].

  3. Tsai AG, Williamson DF, Glick HA. Direct medical cost of overweight and obesity in the USA: a quantitative systematic review. Obes Rev. 2011;12:50–61.

    Article  CAS  Google Scholar 

  4. NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19· 2 million participants. Lancet. 2016;387:1377–96.

  5. Malik VS, Popkin BM, Bray GA, Després J-P, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010;121:1356–64.

    Article  Google Scholar 

  6. Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 2013;346:e7492.

    Article  Google Scholar 

  7. Dennis EA, Flack KD, Davy BM. Beverage consumption and adult weight management: a review. Eat Behav. 2009;10:237–46.

    Article  Google Scholar 

  8. WHO. Population nutrient intake goals for preventing diet-related chronic diseases: World Health Organization Available from: http://www.who.int/nutrition/topics/5_Population_Nutrient/EN/

  9. Department of Health, US. Dietary guidelines for Americans 2015-2020. New York City, N.Y.: Skyhorse Publishing Inc.; 2017.

  10. WHO. Guideline: sugars intake for adults and children. Geneva: World Health Organization; 2015.

  11. Sylvetsky AC, Jin Y, Clark EJ, Welsh JA, Rother KI, Talegawkar SA. Consumption of low-calorie sweeteners among children and adults in the United States. J Acad Nutr Diet. 2017;117:441–8. e2.

    Article  Google Scholar 

  12. Food and Drug Administration, US. Additional information about high-intensity sweeteners permitted for use in food in the United States 2015 [updated 05/26/2015].

  13. Whitehouse CR, Boullata J, McCauley LA. The potential toxicity of artificial sweeteners. Aaohn J. 2008;56:251–61.

    Article  Google Scholar 

  14. Food and Drug Administration, US. High-intensity sweeteners 2014. Available from: https://www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm397716.htm.

  15. Gardner C, Wylie-Rosett J, Gidding SS, Steffen LM, Johnson RK, Reader D, et al. Nonnutritive sweeteners: current use and health perspectives. Circulation. 2012;126:509–19.

    Article  Google Scholar 

  16. Shankar P, Ahuja S, Sriram K. Non-nutritive sweeteners: review and update. Nutrition. 2013;29:1293–9.

    Article  CAS  Google Scholar 

  17. Evert AB, Boucher JL, Cypress M, Dunbar SA, Franz MJ, Mayer-Davis EJ, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37:S120–S43.

    Article  Google Scholar 

  18. Pepino MY. Metabolic effects of non-nutritive sweeteners. Physiol Behav. 2015;152:450–5.

    Article  CAS  Google Scholar 

  19. Romo-Romo A, Aguilar-Salinas CA, Brito-Córdova GX, Díaz RAG, Valentín DV, Almeda-Valdes P. Effects of the non-nutritive sweeteners on glucose metabolism and appetite regulating hormones: systematic review of observational prospective studies and clinical trials. PLoS ONE. 2016;11:e0161264.

    Article  Google Scholar 

  20. Berlin I, Vorspan F, Warot D, Manéglier B, Spreux-Varoquaux O. Effect of glucose on tobacco craving. Is it mediated by tryptophan and serotonin? Psychopharmacology. 2005;178:27–34.

    Article  CAS  Google Scholar 

  21. Brandt KR, Gibson EL, Rackie JM. Differential facilitative effects of glucose administration on Stroop task conditions. Behav Neurosci. 2013;127:932.

    Article  Google Scholar 

  22. Brandt KR, Sünram-Lea SI, Qualtrough K. The effect of glucose administration on the emotional enhancement effect in recognition memory. Biol Psychol. 2006;73:199–208.

    Article  Google Scholar 

  23. Brown AW, Brown MMB, Onken KL, Beitz DC. Short-term consumption of sucralose, a nonnutritive sweetener, is similar to water with regard to select markers of hunger signaling and short-term glucose homeostasis in women. Nutr Res. 2011;31:882–8.

    Article  CAS  Google Scholar 

  24. Burns TS, Stargel W, Tschanz C, Kotsonis FN, Hurwitz A. Aspartame and sucrose produce a similar increase in the plasma phenylalanine to large neutral amino acid ratio in healthy subjects. Pharmacology. 1991;43:210–9.

    Article  CAS  Google Scholar 

  25. Coppola L, Coppola A, Grassia A, Mastrolorenzo L, Lettieri B, De Lucia D, et al. Acute hyperglycemia alters von Willebrand factor but not the fibrinolytic system in elderly subjects with normal or impaired glucose tolerance. Blood Coagul & Fibrinolysis. 2004;15:629–35.

    Article  Google Scholar 

  26. Flint RW, Turek C. Glucose effects on a continuous performance test of attention in adults. Behav Brain Res. 2003;142:217–28.

    Article  CAS  Google Scholar 

  27. Foster J, Lidder P, Sünram S. Glucose and memory: fractionation of enhancement effects? Psychopharmacol (Berl). 1998;137:259–70.

    Article  CAS  Google Scholar 

  28. Geuns JM, Buyse J, Vankeirsbilck A, Temme EH. Metabolism of stevioside by healthy subjects. Exp Biol Med. 2007;232:164–73.

    CAS  Google Scholar 

  29. Gonder-Frederick L, Hall J, Vogt J, Cox D, Green J, Gold P. Memory enhancement in elderly humans: effects of glucose ingestion. Physiol Behav. 1987;41:503–4.

    Article  CAS  Google Scholar 

  30. Green MW, Taylor MA, Elliman NA, Rhodes O. Placebo expectancy effects in the relationship between glucose and cognition. Br J Nutr. 2001;86:173–9.

    Article  CAS  Google Scholar 

  31. Hazali N, Mohamed A, Ibrahim M, Masri M, Isa KAM, Nor NM. Effect of acute Stevia consumption on blood glucose response in healthy Malay young adults. Sains Malays. 2014;43:649–54.

    CAS  Google Scholar 

  32. Horwitz DL, McLane M, Kobe P. Response to single dose of aspartame or saccharin by NIDDM patients. Diabetes Care. 1988;11:230–4.

    Article  CAS  Google Scholar 

  33. Just T, Pau HW, Engel U, Hummel T. Cephalic phase insulin release in healthy humans after taste stimulation? Appetite. 2008;51:622–7.

    Article  CAS  Google Scholar 

  34. Manning CA, Parsons MW, Gold PE. Anterograde and retrograde enhancement of 24-h memory by glucose in elderly humans. Behav Neural Biol. 1992;58:125–30.

    Article  CAS  Google Scholar 

  35. Manning CA, Stone WS, Korol DL, Gold PE. Glucose enhancement of 24-h memory retrieval in healthy elderly humans. Behav Brain Res. 1998;93:71–6.

    Article  CAS  Google Scholar 

  36. Messier C, Desrochers A, Gagnon M. Effect of glucose, glucose regulation, and word imagery value on human memory. Behav Neurosci. 1999;113:431.

    Article  CAS  Google Scholar 

  37. Messier C, Gagnon M, Knott V. Effect of glucose and peripheral glucose regulation on memory in the elderly. Neurobiol Aging. 1997;18:297–304.

    Article  CAS  Google Scholar 

  38. Newcomer JW, Craft S, Fucetola R, Moldin SO, Selke G, Paras L, et al. Glucose-induced increase in memory performance in patients with schizophrenia. Schizophr Bull. 1999;25:321–35.

    Article  CAS  Google Scholar 

  39. Nguyen UN, Dumoulin G, Henriet M-Trs, Regnard J. Aspartame ingestion increases urinary calcium, but not oxalate excretion, in healthy subjects. J Clin Endocrinol & Metab. 1998;83:165–8.

    Article  CAS  Google Scholar 

  40. Okuno G, Kawakami F, Tako H, Kashihara T, Shibamoto S, Yamazaki T, et al. Glucose tolerance, blood lipid, insulin and glucagon concentration after single or continuous administration of aspartame in diabetics. Diabetes Res Clin Pract. 1986;2:23–7.

    Article  CAS  Google Scholar 

  41. Parent MB, Krebs-Kraft DL, Ryan JP, Wilson JS, Harenski C, Hamann S. Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli. Neuropsychologia. 2011;49:1052–66.

    Article  Google Scholar 

  42. Shigeta H, Yoshida T, Nakai M, Mori H, Kano Y, Nishioka H, et al. Effects of aspartame on diabetic rats and diabetic patients. J Nutr Sci Vitaminol (Tokyo). 1985;31:533–40.

    Article  CAS  Google Scholar 

  43. Smeets PA, de Graaf C, Stafleu A, van Osch MJ, van der Grond J. Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. Am J Clin Nutr. 2005;82:1011–6.

    Article  CAS  Google Scholar 

  44. Tey S, Salleh N, Henry J, Forde C. Effects of aspartame-, monk fruit-, stevia-and sucrose-sweetened beverages on postprandial glucose, insulin and energy intake. Int J Obes. 2017;41:450–7.

    Article  CAS  Google Scholar 

  45. Wu T, Bound MJ, Zhao BR, Standfield SD, Bellon M, Jones KL, et al. Effects of a D-xylose preload with or without sitagliptin on gastric emptying, glucagon-like peptide-1, and postprandial glycemia in type 2 diabetes. Diabetes Care. 2013;36:1913–8.

    Article  CAS  Google Scholar 

  46. Wu T, Zhao BR, Bound MJ, Checklin HL, Bellon M, Little TJ, et al. Effects of different sweet preloads on incretin hormone secretion, gastric emptying, and postprandial glycemia in healthy humans. Am J Clin Nutr. 2012;95:78–83.

    Article  CAS  Google Scholar 

  47. Walk AM, Raine LB, Kramer AF, Cohen NJ, Khan NA, Hillman CH. Differential effects of carbohydrates on behavioral and neuroelectric indices of selective attention in preadolescent children. Front Hum Neurosci. 2017;11:614.

    Article  Google Scholar 

  48. Ginieis R, Franz EA, Oey I, Peng M. The “sweet” effect: comparative assessments of dietary sugars on cognitive performance. Physiol Behav. 2018;184:242–7.

    Article  CAS  Google Scholar 

  49. Raben A, Richelsen B. Artificial sweeteners: a place in the field of functional foods? Focus on obesity and related metabolic disorders. Curr Opin Clin Nutr Metab Care. 2012;15:597–604.

    Article  CAS  Google Scholar 

  50. Moebus S, Göres L, Lösch C, Jöckel K-H. Impact of time since last caloric intake on blood glucose levels. Eur J Epidemiol. 2011;26:719.

    Article  CAS  Google Scholar 

  51. DECODE Study Group. Age-and sex-specific prevalences of diabetes and impaired glucose regulation in 13 European cohorts. Diabetes Care. 2003;26:61–9.

    Article  Google Scholar 

  52. Bakari AG, Onyemelukwe GC, Sani BG, Aliyu IS, Hassan SS, Aliyu TM. Relationship between random blood sugar and body mass index in an African population. Int J Diabetes Metab. 2006;14:144.

    Article  Google Scholar 

  53. Kalyani RR, Egan JM. Diabetes and altered glucose metabolism with aging. Endocrinol Metab Clinics. 2013;42:333–47.

    Article  CAS  Google Scholar 

  54. Brown RJ, Rother KI. Non-nutritive sweeteners and their role in the gastrointestinal tract. J Clin Endocrinol Metab. 2012;97:2597–605.

    Article  CAS  Google Scholar 

  55. W-n Cong, Wang R, Cai H, Daimon CM, Scheibye-Knudsen M, Bohr VA, et al. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice. PLoS ONE. 2013;8:e70257.

    Article  Google Scholar 

  56. Filer L, Stegink LD. Aspartame metabolism in normal adults, phenylketonuric heterozygotes, and diabetic subjects. Diabetes Care. 1989;12:67–74.

    Article  Google Scholar 

  57. Koyama E, Sakai N, Ohori Y, Kitazawa K, Izawa O, Kakegawa K, et al. Absorption and metabolism of glycosidic sweeteners of stevia mixture and their aglycone, steviol, in rats and humans. Food Chem Toxicol. 2003;41:875–83.

    Article  CAS  Google Scholar 

  58. McChesney E, Golberg L. The excretion and metabolism of saccharin in man. I. Methods of investigation and preliminary results. Food Cosmet Toxicol. 1973;11:403–14.

    Article  CAS  Google Scholar 

  59. Murata Y, Ogawa T, Suzuki YA, Yoshikawa S, Inui H, Sugiura M, et al. Digestion and absorption of Siraitia grosvenori triterpenoids in the rat. Biosci Biotechnol Biochem. 2010;74:673–6.

    Article  CAS  Google Scholar 

  60. Nofre C, Tinti J-M. Neotame: discovery, properties, utility. Food Chem. 2000;69:245–57.

    Article  CAS  Google Scholar 

  61. Schiffman SS, Rother KI. Sucralose, a synthetic organochlorine sweetener: overview of biological issues. J Toxicol Environ Health, Part B. 2013;16:399–451.

    Article  CAS  Google Scholar 

  62. Swithers SE. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol Metab. 2013;24:431–41.

    Article  CAS  Google Scholar 

  63. Azad MB, Abou-Setta AM, Chauhan BF, Rabbani R, Lys J, Copstein L, et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. Can Med Assoc J. 2017;189:E929–E39.

    Article  Google Scholar 

  64. Rini GB, Di Fede G, Mascellino MR, Rizzo G. The effect of artificial sweetener on insulin secretion. 1. The effect of acesulfame K on insulin secretion in the rat (studies in vivo). Boll Soc Ital Biol Sper. 1987;63:509–13.

    CAS  PubMed  Google Scholar 

  65. Brown RJ, Walter M, Rother KI. Ingestion of diet soda before a glucose load augments glucagon-like peptide-1 secretion. Physiol Behav. 2009;98:618–24. https://doi.org/10.1016/j.physbeh.2009.09.016.

    Article  CAS  Google Scholar 

  66. Fukuda M, Terata T, Tsuda K, Sugawara M, Kitatani N, Seino Y. Aspartame-acesulfame K-containing low-energy erythritol sweetener markedly suppresses postprandial hyperglycemia in mild and borderline diabetics. Food Sci Technol Res. 2010;16:457–66.

    Article  CAS  Google Scholar 

  67. Wang X-T, Dvorak RD. Sweet future: fluctuating blood glucose levels affect future discounting. Psychol Sci. 2010;21:183–8.

    Article  CAS  Google Scholar 

  68. Steinert RE, Frey F, Töpfer A, Drewe J, Beglinger C. Effects of carbohydrate sugars and artificial sweeteners on appetite and the secretion of gastrointestinal satiety peptides. Br J Nutr. 2011;105:1320–8.

    Article  CAS  Google Scholar 

  69. Brown RJ, Walter M, Rother KI. Effects of diet soda on gut hormones in youths with diabetes. Diabetes Care. 2012;35:959–64.

    Article  CAS  Google Scholar 

  70. Aaroe L, Petersen MB. Hunger games: fluctuations in blood glucose levels influence support for social welfare. Psychol Sci. 2013;24:2550–6.

    Article  Google Scholar 

  71. Panahi S, El Khoury D, Luhovyy BL, Goff HD, Anderson GH. Caloric beverages consumed freely at meal-time add calories to an ad libitum meal. Appetite. 2013;65:75–82.

    Article  Google Scholar 

  72. Otero-Losada ME, Mc Loughlin S, Rodriguez-Granillo G, Muller A, Ottaviano G, Moriondo M, et al. Metabolic disturbances and worsening of atherosclerotic lesions in ApoE-/- mice after cola beverages drinking. Cardiovasc Diabetol. 2013;12:57.

    Article  CAS  Google Scholar 

  73. Wu TZ, Bound MJ, Standfield SD, Bellon M, Young RL, Jones KL, et al. Artificial sweeteners have no effect on gastric emptying, glucagon-like peptide-1, or glycemia after oral glucose in healthy humans. Diabetes Care. 2013;36:E202–E3.

    Article  Google Scholar 

  74. Bryant CE, Wasse LK, Astbury N, Nandra G, McLaughlin JT. Non-nutritive sweeteners: no class effect on the glycaemic or appetite responses to ingested glucose. Eur J Clin Nutr. 2014;68:629.

    Article  CAS  Google Scholar 

  75. Yang Q. Gain weight by “going diet?” Artificial sweeteners and the neurobiology of sugar cravings: neuroscience 2010. Yale J Biol Med. 2010;83:101.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Nichol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nichol, A.D., Holle, M.J. & An, R. Glycemic impact of non-nutritive sweeteners: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 72, 796–804 (2018). https://doi.org/10.1038/s41430-018-0170-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-018-0170-6

This article is cited by

Search

Quick links