Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Fabrication of flexible blend films using a chitosan derivative and poly(trimethylene carbonate)

Abstract

To modify the flexibility of chitosan (CS), poly(trimethylene carbonate) (PTMC) and its derivatives and copolymers were blended with a chitosan derivative, N,N,N-trimethylchitosan (TM-CS). The tensile strength of the CS and TM-CS films blended with PTMC was found to cause brittleness, but a PTMC derivative copolymer bearing carboxylic acid improved the elongation properties of TM-CS. A softer film was obtained for a blend film composed of TM-CS with 25% consisting of an added PTMC derivative copolymer bearing a 10% carboxylic acid moiety on the side chain. This film showed an elongation at break of 20.6 ± 9.3% with a tensile strength of 2.2 ± 0.83 MPa, while the original CS and TM-CS films showed an elongation at break of 7.4 ± 3.4% and 9.2 ± 1.6% with a tensile strength of 13.6 ± 1.0 MPa and 3.7 ± 0.35 MPa, respectively. This is the first report of the modification of CS using polymers with a PTMC backbone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Phillips PJ. Mechanism of orientation of aromatic molecules by stretched polyethylene. Chem Rev. 1990;90:425–36.

    Article  CAS  Google Scholar 

  2. Chum PS, Swogger KW. Olefin polymer technologies – History and recent progress at The Dow Chemical Company. Prog Polym Sci. 2008;33:797–819.

    Article  CAS  Google Scholar 

  3. Sturzel M, Mihan S, Mulhaupt R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem Rev. 2016;116:1398–433.

    Article  PubMed  Google Scholar 

  4. Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci NPCL. and PCL-based materials in biomedical applications. J Biomater Sci Polym Ed. 2018;29:863–93.

    Article  CAS  PubMed  Google Scholar 

  5. Tempelaar S, Mespouille L, Coulembier O, Dubois P, Dove AP. Synthesis and post-polymerization modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerization. Chem Soc Rev. 2013;42:1312–36.

    Article  CAS  PubMed  Google Scholar 

  6. Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog Polym Sci. 2011;36:1254–76.

    Article  CAS  Google Scholar 

  7. Imre B, Pukanszky B. Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J. 2013;49:1215–33.

    Article  CAS  Google Scholar 

  8. Saini P, Arora M, Ravi Kumar MNV. Poly(lactic acid) blends in biomedical applications. Adv Drug Deliv. Rev 2016;107:47–59.

    Article  CAS  PubMed  Google Scholar 

  9. Kun D, Pukanszky B. Polymer/lignin blends: Interactions, properties, applications. Eur Polym J. 2017;93:618–41.

    Article  CAS  Google Scholar 

  10. Wang C, Kelley SS, Venditti RA. Lignin-based thermoplastic materials. CHEMSUSCHEM. 2016;9:770–83.

    Article  CAS  PubMed  Google Scholar 

  11. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34:641–78.

    Article  CAS  Google Scholar 

  12. Liu X, Hu Q, Fang Z, Zhang X, Zhang B. Magnetic chitosan nanocomposites: A useful recyclable tool for heavy metal ion removal. Langmuir. 2009;25:3–8.

    Article  CAS  PubMed  Google Scholar 

  13. Jung CL, Park SC, Lim H. Synthesis of surface-reinforced biodegradable chitosan nanoparticles and their application in nanostructured antireflective and self-cleaning surfaces. ACS Appl Mater Interf. 2019;11:40835–41.

    Article  CAS  Google Scholar 

  14. Zhou X, Wang H, Zhang J, Li X, Wu Y, Wei Y, et al. Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomaterialia. 2017;54:128–37.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34–47.

    Article  CAS  PubMed  Google Scholar 

  16. Sarasam AR, Krishnaswamy RK, Madihally SV. Blending chitosan with polycaprolactone: effects on physicochemical and antibacterial properties. Biomacromolecules. 2006;7:1131–8.

    Article  CAS  PubMed  Google Scholar 

  17. Yang J, Li M, Wang Y, Wu H, Zhen T, Xiong L, et al. Double cross-linked chitosan composite films developed with oxidized tannic acid and ferric ions exhibit high strength and excellent water resistance. Biomacromolecules. 2019;20:801–12.

    Article  CAS  PubMed  Google Scholar 

  18. Kwon S, Park JH, Chung H, Kwon IC, Jeong SY, Kim IS. Physicochemical characteristics of self-assembled nanoparticles based on glycol chitosan bearing 5β-cholanic acid. Langmuir. 2003;19:10188–93.

    Article  CAS  Google Scholar 

  19. Razi MA, Wakabayashi R, Goto M, Kamiya N. Self-assembled reduced albumin and glycol chitosan nanoparticles for paclitaxel delivery. Langmuir. 2019;35:2610–8.

    Article  CAS  PubMed  Google Scholar 

  20. Sashiwa H, Yamamori N, Ichinose Y, Sunamoto J, Aiba S. Chemical modification of chitosan 17. Macromol Biosci. 2003;3:231–3.

    Article  CAS  Google Scholar 

  21. Jayakumar R, Prabaharan M, Nair SV, Tokura S, Tamura H, Selvamurugan N. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog Mater Sci. 2010;55:675–709.

    Article  CAS  Google Scholar 

  22. Kim CH, Choi JW, Chun HJ, Choi KS. Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity. Polym Bull. 1996;38:387–93.

    Article  Google Scholar 

  23. Rúnarsson ÖV, Holappa J, Nevalainen T, Hjálmarsdóttir M, Järvinen T, Loftsson T, et al. Antibacterial activity of methylated chitosan and chitooligomer derivatives: Synthesis and structure activity relationships. Eur Polym J. 2007;43:2660–71.

    Article  Google Scholar 

  24. Kadokawa J, Shimohigoshi R, Yamashita K, Yamamoto K. Synthesis of chitin and chitosan stereoisomers by thermostable α-glucan phosphorylase-catalyzed enzymatic polymerization of α-d-glucosamine 1-phosphate. Org Biomol Chem. 2015;13:4336–43.

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Zivanvic S, Davidson PM, Kit K. Characterization and comparison of chitosan/PVP and chitosan/PEO blend films. Carbohydr Polym. 2010;79:786–91.

    Article  CAS  Google Scholar 

  26. You J, Xie S, Cao J, Ge H, Xu M, Zhang L, et al. Quaternized chitosan/poly(acrylic acid) polyelectrolyte complex hydrogels with tough, self-recovery, and tunable mechanical properties. Macromolecules. 2016;49:1049–59.

    Article  CAS  Google Scholar 

  27. Wan Y, Wu H, Yu A, Wen D. Biodegradable polylactide/chitosan blend membrances. Biomacromolecules. 2006;7:1362.

    Article  CAS  PubMed  Google Scholar 

  28. Tempelaar S, Mespouille L, Coulembier O, Dubois P, Dove AP. Synthesis and post-polymerisation modifications of aliphatic poly(carbonate)s prepared by ring-opening polymerization. R Soc Chem. 2013;42:1312–36.

    Article  CAS  Google Scholar 

  29. Ajiro H, Takahashi Y, Akashi M. Thermosensitive biodegradable homopolymer of trimethylene carbonate derivative at body temperature. Macromolecules. 2012;45:2668–74.

    Article  CAS  Google Scholar 

  30. Nederberg F, Zhang Y, Tan JPK, Xu K, Wang H, Yang C, et al. Biodegradable nanostructures with selective lysis of microbial membranes. Nat Chem. 2011;3:409–14.

    Article  CAS  PubMed  Google Scholar 

  31. Zhao C, Shao L, Lu J, Deng X, Wu Y. Tumor acidity-induced sheddable polyethylenimine-poly(trimethylene carbonate)/DNA/polyethylene glycol-2,3-dimethylmaleicanhydride ternary complex for efficient and safe gene delivery. ACS Appl Mater Inter. 2016;8:6400–10.

    Article  CAS  Google Scholar 

  32. Fukushima K. Poly(trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater Sci 2016;4:9–24.

    Article  CAS  PubMed  Google Scholar 

  33. Chanthaset N, Ajiro H. Preparation of thermosensitive biodegradable hydrogel using poly(5-[2-{2-(2-methoxyethoxy)ethyoxy}-ethoxymethyl]−5-methyl-1,3-dioxa-2-one) derivatives. Materialia.2019;5:100178

    Article  Google Scholar 

  34. Liu D, Lia H, Zhoua G, Yuana M, Qin Y. Biodegradable poly(lactic‐acid)/poly(trimethylene‐carbonate)/laponite composite film: development and application to the packaging of mushrooms (Agaricus bisporus). Polym Adv Technol. 2015;26:1600–7.

    Article  CAS  Google Scholar 

  35. Choi J, Kwak SY. Synthesis and characterization of hyperbranched poly(ε-caprolactone)s having different lengths of homologous backbone segments. Macromolecules. 2003;36:8630–7.

    Article  CAS  Google Scholar 

  36. Ariga T, Tanaka T, Endo T. Alkyl halide‐initiated cationic polymerization of cyclic carbonate. J Polym Sci Part A: Polym Chem. 1993;31:581–4.

    Article  CAS  Google Scholar 

  37. Mady MF, Charoensumran P, Ajiro H, Kelland MA. Synthesis and characterization of modified aliphatic polycarbonates as environmentally friendly oilfield scale inhibitors. Energ Fuels. 2018;32:6746–55.

    Article  CAS  Google Scholar 

  38. Al-Azemi TF, Harmon JP, Bisht KS. Enzyme-catalyzed ring-opening copolymerization of 5-methyl-5-benzyloxycarbonyl-1,3-dioxan-2-one (MBC) with trimethylene carbonate (TMC): synthesis and characterization. Biomacromolecules. 2000;1:493–500.

    Article  CAS  PubMed  Google Scholar 

  39. Sébastien F, Stéphane G, Copinet A, Coma V. Novel biodegradable films made from chitosan and poly(lactic acid) with antifungal properties against mycotoxinogen strains. Carbohydr Polym. 2006;65:185–93.

    Article  Google Scholar 

  40. Zhanga J, Tana W, Zhang Z, Song Y, Li Q, Dong F. Guo Z. Int J Biol Macromol. 2018;109:1061.

    Google Scholar 

  41. Cazóna P, Velázqueza G, Vázquez M. Characterization of bacterial cellulose films combined with chitosan and polyvinyl alcohol: Evaluation of mechanical and barrier properties. Carbohydr Polym. 2019;216:72–85.

    Article  Google Scholar 

  42. Nobuoka H, Ajiro H. Development of ester free type poly(trimethylene carbonate) derivatives with pendant fluoroaromatic groups. Macromol Chem Phys. 2019;220:1900051.

    Article  Google Scholar 

  43. Kulig D, Zimoch-Korzycka A, Jarmoluk A, Marycz K. Study on alginate–chitosan complex formed with different polymers ratio. Polymers. 2016;8:167.

    Article  PubMed Central  Google Scholar 

  44. Cao J, Li J, Chen Y, Zhang L, Zhou J. Dual physical crosslinking strategy to construct moldable hydrogels with ultrahigh strength and toughness. Adv Funct Mater. 2018;28:1800739.

    Article  Google Scholar 

  45. Mi FL, Wu YY, Lin YH, Sonaje K, Ho YC, Chen CT, et al. Oral delivery of Ppeptide drugs using nanoparticles self-assembled by poly(γ-glutamic acid) and a chitosan derivative functionalized by trimethylation. Bioconjugate Chem. 2008;19:1248–55.

    Article  CAS  Google Scholar 

  46. Alhwaige AA, Ishida H, Qutubuddin S. Poly(benzoxazine-f-chitosan) films: The role of aldehyde neighboring groups on chemical interaction of benzoxazine precursors with chitosan. Carbohydr Polym. 2019;209:122–9.

    Article  CAS  PubMed  Google Scholar 

  47. Neto RJG, Genevro GM, Paulo LA, Lopes PS, Moraes MA, Beppu MM. Characterization and in vitro evaluation of chitosan/konjac glucomannan bilayer film as a wound dressing. Carbohydr Polym. 2019;212:59–66.

    Article  Google Scholar 

  48. Chen M, Runge T, Wang L, Li R, Feng J, Shu XL, et al. Hydrogen bonding impact on chitosan plasticization. Carbohydr Polym. 2018;200:115–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Bilateral program: Joint Research Thailand-Japan (JSPS-NRCT), Grant Number JPJSBP120189206. This work was supported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B), Grant Number JP20H02799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroharu Ajiro.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irikura, K., Ekapakul, N., Choochottiros, C. et al. Fabrication of flexible blend films using a chitosan derivative and poly(trimethylene carbonate). Polym J 53, 823–833 (2021). https://doi.org/10.1038/s41428-021-00470-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-021-00470-6

This article is cited by

Search

Quick links